Home | deutsch  |  Impressum  |  Data Protection  |  Sitemap  |  Intranet  |  KIT
Department of Mathematics

Karlsruhe Institute of Technology
D-76128 Karlsruhe
Germany
Tel.: +49 721 608-43800

Qualification program

Regular Events SS 06 - SS 15

Seminar of the RTG (Homepage)

Recommended Lectures WS 14/15

Khrabustovskyi: Homogenization of partial differential equations (4 SWS)
Hettlich: Streutheorie (4 SWS)

Recommended Lectures SS 14

Jahnke: Numerical methods for Maxwell's equations (2+1 SWS)
Rottmann-Matthes: Travelling Waves (3+1 SWS)
Schratz: Aspects of Numerical Time Integration (2+2 SWS)

Recommended Lectures WS 13/14

Khrabustovskyi: Introduction to the Homogenization Theory (2 SWS)
Rottmann-Matthes: Dynamical Systems (4+2 SWS)
Schratz: Splitting Methods (2+1 SWS)
Weis: Evolutionsgleichungen (4+2 SWS)

Recommended Lectures SS 13

Blatt: Variationsrechnung (4 SWS)
Dörfler: Adaptive Finite Element Methods (2+1 SWS)
Jahnke: Geometric Numerical Integration (2+1 SWS)
Plum: Rand- und Eigenwertprobleme (4+2 SWS)
Schnaubelt: Internetseminar 'Operator Semigroups for Dispersive Equations'

Recommended Lectures WS 12/13

Hochbruck: Innovative Integratoren für Evolutionsgleichungen (4+2 SWS)
Kirsch: Introduction into Maxwell's Equations (4+2 SWS)
Schnaubelt: Operator Semigroups for Dispersive Equations (2 SWS)


Recommended Lectures SS 12

Cohen: Geometric Numerical Integration (2+1 SWS)
Dörfler: Numerical methods for hyperbolic equations (2 SWS)
Lamm: Wave equations (4+2 SWS)

Recommended Lectures WS 11/12

Lecture Series of the Research Training Group (Homepage)
Hochbruck, Schnaubelt: Analysis und Numerik von Wellenphänomenen (Homepage 2 SWS)
Schnaubelt, Jahnke: Internet Seminar 'Operator Semigroups for Numerical Analysis' (2 SWS)

Recommended Lectures SS 11

Hoang: Differential Equations with Periodic Coefficients (2 SWS)
Dörfler: Numerical methods for Maxwell’s equations (2 SWS)

Recommended Lectures WS 10/11

Hochbruck: Exponential Integrators (2 SWS)
Neuss: Homogenisierung (2 SWS)
Reichel: Nonlinear Schrödinger Equation - Stationary aspects (2 SWS)
Schnaubelt: Evolution Equations (4 SWS)

Recommended Lectures SS 10

Busch: Theoretical Optics (2 SWS)
Busch, Dörfler: Optische Kräfte und deren Anwendungen (2 SWS)
Dörfler: Adaptive Finite Element Methods (2 SWS)
Jahnke: Numerical methods for timedependent Maxwell's equations (2 SWS)
Plum: Computer-assisted proofs for partial differential equations (2 SWS)
Schnaubelt: Nonlinear Schrödinger Equations - Dynamical Aspects (2 SWS)
Schnaubelt: Spectral theory (4 SWS)

Recommended Lectures WS 09/10

Busch: Numerical Methods in Photonics (2 SWS)
Jahnke: High-dimensional approximation (2 SWS)
Mayer: Iterative Methods for Sparse Linear Systems (SWS)
Neuß: Numerik Partieller Differentialgleichungen 2 (4+2 SWS)
Plum, Reichel: Variational methods and applications to PDEs (2+1 SWS)
Weis: Fourieranalysis II (4+2 SWS)

Recommended Lectures SS 09

Jahnke: Geometric numerical integration (2 SWS)
Kirsch: Mathematical Theory of Maxwell's Equations (4 SWS)
Plum: Boundary and Eigenvalue Problems (4+2 SWS)
Reichel: Sobolev Spaces (2 SWS)

Recommended Lectures WS 08/09

Wieners: Numerical methods for Maxwell’s equations 2 (2 SWS)

Recommended Lectures SS 08

Jahnke: Numerical Methods for Quantum Dynamics (2 SWS)
Plum: Computerunterstützte Beweise bei partiellen Differentialgleichungen (4 SWS)
Schnaubelt: Evolutionsgleichungen (2 SWS)
Weis: Spectral Theory (4 SWS)
Wieners: Numerical Methods for Maxwell's Equations (2 SWS)

Recommended Lectures WS 07/08

Dohnal, Engstrom: Mathematical Topics on Photonic Crystals (2 SWS)
Dörfler: Adaptive finite element methods (2 SWS)

Recommended Lectures SS 07

Dörfler: Numerical methods for the Maxwell equations 2 (2 SWS)
Hettlich: Die Maxwell–Gleichungen (2 SWS)

Recommended Lectures WS 06/07

Dörfler: Numerical methods for the Maxwell equations 1 (2 SWS)
Schneider, Lescarret: Pulse Dynamics (2 SWS)