3. Bruhat–Tits Fixed Point Theorem

History:
Elie Cartan (1928): simply conn., complete Riem.
mfd \mathbf{M} of non-pos. sect. curvature
\Rightarrow every finite set has a center
i.e. the map $x \mapsto \frac{1}{n} \sum_{i=1}^{n} d(x, x_i)^2$ for a fixed
n-tuple x_1, \ldots, x_n has a minimum.

As a consequence he obtains that compact isometries g of \mathbf{M}
always have a fixed pt.

François Bruhat – Jacques Tits (1972):
same is true for Euclidean buildings (which
are a subclass of CAT(0) spaces).

Def. The **circumradius** (short: radius) of a bounded
set Y in a metric space (X, d) is given by
\[
 r(Y) := \inf_{x \in X} \left(\sup_{a \in A} d(x, a) \right) \\
= \inf_{x \in \mathbb{R}^+} \left\{ y \in \mathbb{R} : y \leq B(x), \ x \in X \right\}
\]

I.13 Existence of a center (Bruhat–Tits/Brown)

X a complete CAT(0) space and Y a bounded
subset of X, then there exists a unique $p \in X$

$s.t. \quad B_{x}(y)(p) \geq Y$.

We call p the center of Y.
For the proof of I.13 we need the following formula in \((\mathbb{R}^2, \text{de}^2)\):

\[P_t := (1-t)x + ty \in x\bar{y} \text{ for } t \in [0,1] \]

Then \(\forall z \in \mathbb{R}^2\)

\[
\begin{align*}
 d^2(z, P_t) &= (1-t) d^2(z, x) + td^2(z, y) \\
 &= t(1-t) d^2(x, y)
\end{align*}
\]

Proof of I.13: We first prove uniqueness:

For a bounded set \(Y\) put \(\tau(x, y) := \sup \{d(x, y) : y \in Y\}\).

i.e. \(\tau(x, y)\) is the smallest number such that \(y \in \overline{B}_\tau(x)\).

For any pair \(a, b\) of points in \(X\) consider an arbitrary \(z \in Y\) the triple \((a, b, z)\) and its comparison triangle in \((\mathbb{R}^2, \text{de}^2)\):

Then

\[
\begin{align*}
 d^2(z, m) &\leq d^2(z, \overline{a}) = \frac{1}{2} d_e^2(z, \overline{a}) + \frac{1}{2} d_e^2(z, \overline{b}) - \frac{1}{4} d_e^2(a, b) \\
 &= 4 d^2(z, m) \leq 2d^2(z, a) + 2d^2(z, b) - d^2(a, b) \\
 &= 4 \tau^2(m, Y) \leq 2 \tau^2(a, Y) + 2 \tau^2(b, Y) - d^2(a, b)
\end{align*}
\]

as \(z \in Y\)

by construction of \(\tau(Y)\)
If we assume that there exist two circumcenters \(q, q' \) in \(X \) we may put \(a := q \) and \(b := q' \) in (**) .

This implies
\[
0 \leq d^2(a, b) \leq 4r^2(Y) = 4r^2(Y) = 0,
\]

Hence \(q = q' \).

To show existence:
Take a sequence \((x_n) \) of pts in \(X \) such \(r(x_n, y) \to r(y) \).

Apply (**) to \(a := x_n \) \(b := x_m \) for some \(m, n \).

The right hand side then can be made arbitrarily small by making \(m, n \) large \(\Rightarrow (x_n) \) is Cauchy

and has a limit \(x \in X \). (as \(X \) is complete).

One can check \(r(x, y) = r(y) \).

From I.13 we will be able to deduce

I.14 **Brouwer Fixed Point Theorem**

If \(G \subseteq \text{Isom}(X) \), \(X \) a complete CAT(0) space.

If \(G \) stabilizes a bounded subset in \(X \)
(e.g. if \(G \) is finite) then \(X^G \neq \emptyset \) and convex.

\[
\text{put } X^G := \{ x \in X \mid gx = x \text{ for all } g \} \]
proof of 1.14: The fact that $X^G = \emptyset$ follows immediately from 1.14 because the circumcenter is fixed by G_1 of the fixed bounded set (e.g. a finite orbit).

To see that it is convex is left as an exercise (hint: use the fact that X is uniquely geodesic).

Examples: buildings, symmetric spaces.
4 Symmetric spaces

I.15 Def. A symmetric space is a Riemannian manifold \(M \) such that the geodesic symmetry at \(x \) is a global isometry \(A_x M \). Equivalently, for \(x \in M \), the differential equals \(-\text{id} \) on \(T_x M \), and \(\xi_x(x) = x \).

I.16 Ex. \(S^n \), \(E^n \), \(H^n \)

We say that a symmetric space \(M \) is of non-compact type if it has non-positively sectional curvature (and no non-trivial Euclidean factor).

I.17 Fact: the connected component of \(\text{id} \) in \(\text{Isom}(M) \) of a symmetric space \(M \) of non-compact type is a semi-simple Lie group \(G \) with trivial center and no compact factors.

I.18 On the contrary, from every even Lie group one can construct a symmetric space \(M \) of non-compact type as follows:

\[M = G / K \]

\(M \) is a compact space, where \(K \) is a maximal compact subgroup of \(G \).
Example

Take $G = \text{SL}(\mathbb{R}) \quad K = \text{SO}(n)$ - orthogonal. $G^T G = I$

$G/K = \mathbb{R}$ can be identified with the collection of scalar products on \mathbb{R}^n for which the unit balls have the same volume as the one for d_{eucl}.

Define a distance function on \mathbb{R} as follows:

$x_i := (\ldots); \text{ scalar products } i = 1, 2 \ldots \nu = \text{basis of } \mathbb{R}^n$ s.t. they correspond to $(\lambda_1, \ldots, \lambda_n), (\mu_1, \ldots, \mu_n)$

put $d(x_1, x_2) := \sqrt{\sum_{i=1}^{\nu} \left(\log \frac{\lambda_i}{\mu_i} \right)^2}$

Nontrivial fact: (\mathbb{R}, d) is a CAT(0) space.

Properties

1. every symm. sp. of non-compact type contains a subset isometric to some (\mathbb{R}^n, d_{eucl}). The maximal such n is called its rank.

2. $Ax_1, x_2 \in \mathbb{R}$: symm. sp. of non-compact type and the line there exists a k-flat containing x_1 and x_2.

3. the flats from (2) are equipped with a (natural) action of an infinite (euclidean) reflection group.

4. dimension of the symm. space is larger than the dim. of its max. flats (i.e., its rank).
5 Euclidean buildings

The building blocks of buildings are:

I.21 "Def." Euclidean Coxeter complexes

$W \leq \text{Isom}(\mathbb{R}^n)$ discrete reflection group

ie. disc. subgp generated by orthog. refl. along hyperplanes in \mathbb{R}^n

\triangleright collection of refl. hyperplanes H in \mathbb{R}^n is locally finite

\triangleright it determines a cellular decomposition of \mathbb{R}^n the underlying simp. struc. of which we call Euclidean Coxeter Cplx

List of all Eu. Cox.Cplx. in dim 2:

$\hat{A}_2, \hat{C}_2 = \hat{C}_2$.

See above

in dim 1: \hat{A}_1

I.22 "Def." Euclidean building

A Euclidean building is a simp. Cplx X which satisfies $(B1)$: Any two simplices are contained in a common supl. Cplx (called apartment) that is isom. to some Euclidean Cox. Cplx.

Combinatorially, i.e. as simp. Cplx.

$(B2)$: Given A, A' two apartments in X there exists an isom. $A \to A'$ fixing A, A' pointwise.
Examples / Characterizations / Facts:

1) The 1-dim Euclid. Edges are exactly the (simple) trees w/o leaves. (Diagram)

2) Higher dimensional Euclid. Edges arise (for example) from $\text{SL}_n(\mathbb{Q}_p)$ + valuation. And $\text{SL}_n(\mathbb{Q}_p)$ acts transitively on max. simplices.

3) Every Eucl. Edge has a metric realization (I_x, \bar{d}) s.t. I agents $A \subseteq X$, the rest of d to $1/4$ is the Euclidean metric. The space (I_x, \bar{d}) is a CAT(0) space, (complete)

4) (Kleiner) X a locally compact CAT(0) space of geometric dimension n. If any pair of points is in a common n-flat, then X is the metric realization of a Eucl. Edge.

$\text{geom.dim} := \sup \text{ over all compact subsets } K \subseteq X \text{ of the topol. dim. of } K$

See also Kleines: "The local structure of length-spaces with curv. bdd. above" (1995) for alternative descriptions.

End of 2nd lecture

[AB]: Abramenko - Brown: Buildings - Theory and Applications