Home | english | Impressum | Sitemap | Intranet | KIT
Arbeitsgruppe Zahlentheorie und Algebraische Geometrie

Sekretariat
Kollegiengebäude Mathematik (20.30)
Zimmer 1.027

Adresse
Englerstraße 2, 76131 Karlsruhe

Öffnungszeiten:
Mo - Fr, 9.15 - 11.45

Tel.: 0721 608 43041

Fax.: 0721 608 44244

Vortragsreihe: Unendliche Translationsflächen (Wintersemester 2012/13)

Veranstaltungen: Vorlesung ()
Semesterwochenstunden: 2
Hörerkreis: Mathematik (5.-99. Semester)


Termine
Vorlesung: Montag 9:45-11:15 Seminarraum K2 (Kronenstraße 32) Beginn: 15.10.2012, Ende: 4.2.2013
Dozenten
Dozentin Dr. Anja Randecker
Sprechstunde:
Zimmer Kollegiengebäude Mathematik (20.30)
Email: anja.randecker@kit.edu

In dieser Vortragsreihe möchten wir uns einem aktuellen Forschungsthema nähern. Die Theorie der Translationsflächen ist zwar schon etwa 25 Jahre alt, doch hat man sich dabei meist auf endliche Translationsflächen beschränkt. Für diese gibt es viele und teils sehr tiefgehende Ergebnisse. Dagegen wird für unendliche Translationsflächen momentan erst eine Theorie entwickelt, so dass hier noch viel zu entdecken ist. Zu unserem Vorteil braucht man trotz der Aktualität nicht viele Vorkenntnisse, um die zur Zeit bearbeiteten Probleme und auch einige Forschungsarbeiten dazu zu verstehen.

Im Einzelnen wollen wir uns mit den folgenden Fragen beschäftigen:

  • Was sind Translationsflächen?
  • Was kann man über ihre Singularitäten sagen?
  • Wie kann man die unendlichen Translationsflächen klassifizieren?
  • Was lässt sich über ihre Veechgruppen sagen?
  • Welches dynamische Verhalten weisen sie auf?

Wer noch keine Translationsflächen kennt, darf sich gern erstmal Polygone in der Ebene vorstellen, die an parallelen und gleich langen Kanten verklebt werden. Warum das gerechtfertigt ist, werden wir gleich zu Beginn der Vortragsreihe sehen.

Prüfung

Eine Prüfung ist für diese Vortragsreihe nicht vorgesehen.

Literaturhinweise

Einige Artikel, die inhaltlich gut dazupassen, und das Skript zur Vortragsreihe gibt es auf der Ilias-Seite dieser Veranstaltung.