1. Polygonal Billiards

2. Homogeneous foliations on \mathbb{C}^2

3. Dictionary

4. Foliations in $\mathbb{RP}(3)$
Dynamical systems whose ingredients are:
Polygonal Billiards

Dynamical systems whose ingredients are: a table (Euclidean polygon P)
Polygonal Billiards

Dynamical systems whose ingredients are: a table (Euclidean polygon P) + ball (point particle)
Dynamical systems whose ingredients are: a table (Euclidean polygon P) + ball (point particle) + reflection law (à la Descartes).
Polygonal Billiards

Dynamical systems whose ingredients are: a table (Euclidean polygon P) + ball (point particle) + reflection law (à la Descartes).
Dynamical systems whose ingredients are: a table (Euclidean polygon P) + ball (point particle) + reflection law (à la Descartes).

(No friction, motion ends if we hit an infinitesimal pocket)
Idea (Fox-Kershner/Katok-Zemljakov): associate to each polygon P a “translation” (or “flat”) surface $S_P \rightarrow P$

on which geodesics project to billiard trajectories.
Idea (Fox-Kershner/Katok-Zemljakov): associate to each polygon P a “translation” (or “flat”) surface $S_P \rightarrow P$

on which geodesics project to billiard trajectories. Studying the billiard is equivalent to studying the geodesic flow on S_P.
Polygonal billiards and translation surfaces

Idea (Fox-Kershner/Katok-Zemljakov): associate to each polygon P a “translation” (or “flat”) surface $S_P
ightarrow P$

on which geodesics project to billiard trajectories. Studying the billiard is equivalent to studying the geodesic flow on S_P.

Main open questions: is there a periodic trajectory in every triangular billiard?
Idea (Fox-Kershner/Katok-Zemljakov): associate to each polygon P a “translation” (or “flat”) surface $S_P \rightarrow P$ on which geodesics project to billiard trajectories. Studying the billiard is equivalent to studying the geodesic flow on S_P.

Main open questions: is there a periodic trajectory in every triangular billiard? is the geodesic flow on the generic S_P recurrent or dissipative?
Homogeneous holomorphic foliations on \mathbb{C}^2

Homogeneous $=$ invariant under the homothecy action of \mathbb{C}^* on \mathbb{C}^2.
Homogeneous holomorphic foliations on \mathbb{C}^2

Homogeneous = invariant under the homothecy action of \mathbb{C}^* on \mathbb{C}^2. We will consider foliations \mathcal{F}_λ defined by the holomorphic 1-form ω_λ

$$\frac{\omega_\lambda}{z_1 z_2(z_2 - z_1)} = \lambda_1 \frac{dz_1}{z_1} + \lambda_2 \frac{dz_2}{z_2} + \lambda_3 \frac{d(z_2 - z_1)}{z_2 - z_1},$$

where $\lambda = (\lambda_1, \lambda_2, \lambda_3)$ and $\pi \lambda_i$ are the interior angles of a triangle P.
Homogeneous holomorphic foliations on \mathbb{C}^2

Homogeneous = invariant under the homothecy action of \mathbb{C}^* on \mathbb{C}^2. We will consider foliations \mathcal{F}_λ defined by the holomorphic 1-form ω_λ

$$\frac{\omega_\lambda}{z_1 z_2 (z_2 - z_1)} = \lambda_1 \frac{dz_1}{z_1} + \lambda_2 \frac{dz_2}{z_2} + \lambda_3 \frac{d(z_2 - z_1)}{z_2 - z_1},$$

where $\lambda = (\lambda_1, \lambda_2, \lambda_3)$ and $\pi \lambda_i$ are the interior angles of a triangle P. In the dual picture, \mathcal{F}_λ is given by the integral curves of the vector field X_λ

$$(\lambda_2 z_1 (z_2 - z_1) + \lambda_3 z_1 z_2) \frac{\partial}{\partial z_1} + (\lambda_1 z_2 (z_1 - z_2) + \lambda_3 z_1 z_2) \frac{\partial}{\partial z_2}$$
Using E. Paul’s work we can assure that the fibers of

\[F_\lambda(z_1, z_2) = z_1^{\lambda_1} z_2^{\lambda_2} (z_2 - z_1)^{\lambda_3} \]

over \(\mathbb{C}^* \) are the leaves of \(\mathcal{F}_\lambda \) in \(\mathbb{C}^2 \setminus \{z_1 z_2(z_2 - z_1) = 0\} \). In other words, \(F_\lambda \) is a \textit{first integral} for \(\mathcal{F}_\lambda \).
Homogeneous holomorphic foliations on \mathbb{C}^2

Using E. Paul’s work we can assure that the fibers of

$$F_\lambda(z_1, z_2) = z_1^{\lambda_1} z_2^{\lambda_2} (z_2 - z_1)^{\lambda_3}$$

over \mathbb{C}^* are the leaves of \mathcal{F}_λ in $\mathbb{C}^2 \setminus \{z_1 z_2 (z_2 - z_1) = 0\}$. In other words, F_λ is a first integral for \mathcal{F}_λ. Hence, there are 3 types of leaves: those in $F_\lambda^{-1}(0)$ (the tangent cone) and $F_\lambda^{-1}(t)$ with $t \in \mathbb{C}^*$ (generic leaf, denoted L).
Consider the 1-form η on \mathbb{C}^2 satisfying $\eta(X_\lambda) = 1$.
Consider the 1-form η on \mathbb{C}^2 satisfying $\eta(X_\lambda) = 1$. Then, for every $L \in \mathcal{F}_\lambda$, $\eta|_L$ is zero free. We can then define new coordinates in L by the map:

$$z(p) = \int_{p_0}^{p} \eta|_L$$
Consider the 1-form η on \mathbb{C}^2 satisfying $\eta(X_\lambda) = 1$. Then, for every $L \in \mathcal{F}_\lambda$, $\eta|_L$ is zero free. We can then define new coordinates in L by the map:

$$z(p) = \int_{p_0}^{p} \eta|_L$$

Remark that, if we change base points in some small patch, then our new coord. change by a translation:

$$c := \int_{p_0}^{p} \eta|_L - \int_{p_1}^{p} \eta|_L = \int_{p_0}^{p_1} \eta|_L$$
Consider the 1-form η on \mathbb{C}^2 satisfying $\eta(X_\lambda) = 1$. Then, for every $L \in \mathcal{F}_\lambda$, $\eta|_L$ is zero free. We can then define new coordinates in L by the map:

$$z(p) = \int_{p_0}^p \eta|_L$$

Remark that, if we change base points in some small patch, then our new coord. change by a translation:

$$c := \int_{p_0}^p \eta|_L - \int_{p_1}^p \eta|_L = \int_{p_0}^{p_1} \eta|_L$$

In other words, the leaves of \mathcal{F}_λ have a “natural” translation surface structure. Notation $(L, \eta|_L)$
Write $X_\lambda = X_1 + iX_2$ and define \mathcal{F}_0 to be the (real) foliation on \mathbb{C}^2 defined by the integral curves of X_1.
Write $X_\lambda = X_1 + iX_2$ and define \mathcal{F}_0 to be the (real) foliation on \mathbb{C}^2 defined by the integral curves of X_1. The restriction of \mathcal{F}_0 to a generic leaf $L \in \mathcal{F}$ is a foliation.
Write $X_\lambda = X_1 + iX_2$ and define \mathcal{F}_0 to be the (real) foliation on \mathbb{C}^2 defined by the integral curves of X_1. The restriction of \mathcal{F}_0 to a generic leaf $L \in \mathcal{F}$ is a foliation. Locally, the map $z : L \to (L, \eta|)$ sends \mathcal{F}_0 to the set of integral curves of $\frac{\partial}{\partial t}$.
Write $X_\lambda = X_1 + iX_2$ and define \mathcal{F}_0 to be the (real) foliation on \mathbb{C}^2 defined by the integral curves of X_1. The restriction of \mathcal{F}_0 to a generic leaf $L \in \mathcal{F}$ is a foliation. Locally, the map $z : L \to (L, \eta \mid)$ sends \mathcal{F}_0 to the set of integral curves of $\frac{\partial}{\partial t}$.

Theorem.

Let $L \in \mathcal{F}_\lambda$ be a fixed generic leaf. Then,
Write $X_\lambda = X_1 + iX_2$ and define \mathcal{F}_0 to be the (real) foliation on \mathbb{C}^2 defined by the integral curves of X_1. The restriction of \mathcal{F}_0 to a generic leaf $L \in \mathcal{F}$ is a foliation. Locally, the map $z : L \to (L, \eta|)$ sends \mathcal{F}_0 to the set of integral curves of $\frac{\partial}{\partial t}$.

Theorem.

Let $L \in \mathcal{F}_\lambda$ be a fixed generic leaf. Then,

1. There exits a translation surface isomorphism $\phi : (L, \eta|) \longrightarrow S_P$.

Dictionary

Ferrán Valdez
Outline
Polygonal Billiards
Homogeneous foliations on \mathbb{C}^2
Dictionary
Foliations in $\mathbb{R}P(3)$
Write $X_\lambda = X_1 + iX_2$ and define \mathcal{F}_0 to be the (real) foliation on \mathbb{C}^2 defined by the integral curves of X_1. The restriction of \mathcal{F}_0 to a generic leaf $L \in \mathcal{F}$ is a foliation. Locally, the map $z : L \rightarrow (L, \eta_1)$ sends \mathcal{F}_0 to the set of integral curves of $\frac{\partial}{\partial t}$.

Theorem.

Let $L \in \mathcal{F}_\lambda$ be a fixed generic leaf. Then,

1. There exits a translation surface isomorphism $\phi : (L, \eta_1) \rightarrow S_P$. In particular, the foliation (L, \mathcal{F}_0) is conjugated by ϕ to a foliation on S_P formed by geodesics parallel to some direction θ.
Write $X_\lambda = X_1 + iX_2$ and define \mathcal{F}_0 to be the (real) foliation on \mathbb{C}^2 defined by the integral curves of X_1. The restriction of \mathcal{F}_0 to a generic leaf $L \in \mathcal{F}$ is a foliation. Locally, the map $z : L \to (L, \eta_L)$ sends \mathcal{F}_0 to the set of integral curves of $\frac{\partial}{\partial t}$.

Theorem.

Let $L \in \mathcal{F}_\lambda$ be a fixed generic leaf. Then,

1. There exits a translation surface isomorphism $\phi : (L, \eta_L) \to S_P$. In particular, the foliation (L, F_0) is conjugated by ϕ to a foliation on S_P formed by geodesics parallel to some direction θ.

2. If we change L for $\rho e^{i\alpha}L$, then \mathcal{F}_0 restricted to $\rho e^{i\alpha}L$ is conjugated to the foliation on S_P formed by geodesics parallel to $\theta + \alpha$.
Sketch of proof.

Aim: construct \(\phi : (L, \eta) \rightarrow S_P \).
Sketch of proof.

Aim: construct $\phi : (L, \eta|) \rightarrow S_P$.

Locally, X_λ restricted to L is of the form

$$t^{1-\lambda_2}(t-1)^{1-\lambda_3} \frac{\partial}{\partial t}, \quad t \in \mathbb{H}$$
Sketch of proof.

Aim: construct $\phi : (L, \eta_1) \rightarrow S_P$.

Locally, X_λ restricted to L is of the form

$$t^{1-\lambda_2}(t-1)^{1-\lambda_3} \partial/\partial t, \quad t \in H$$

Therefore

$$z(t) := \int^t \xi^{\lambda_2-1}(\xi - 1)^{\lambda_3-1} d\xi$$

defines the translation surface structure of L (and locally rectifies X_1).
Sketch of proof.

Aim: construct $\phi : (L, \eta \mid) \longrightarrow S_P$.

Locally, X_λ restricted to L is of the form

$$t^{1-\lambda_2}(t-1)^{1-\lambda_3} \frac{\partial}{\partial t}, \quad t \in \mathbb{H}$$

Therefore

$$z(t) := \int_0^t \xi^{\lambda_2-1}(\xi - 1)^{\lambda_3-1} d\xi$$

defines the translation surface structure of L (& locally rectifies X_1). Remark that f is a Schwarz-Christoffel transformation.
Sketch of proof.

Aim: construct \(\phi : (L, \eta|) \rightarrow S_P\).

Locally, \(X_\lambda\) restricted to \(L\) is of the form

\[
t^{1-\lambda_2}(t - 1)^{1-\lambda_3} \frac{\partial}{\partial t}, \quad t \in \mathcal{H}
\]

Therefore

\[
z(t) := \int_t^t \xi^{\lambda_2-1}(\xi - 1)^{\lambda_3-1} d\xi
\]

defines the translation surface structure of \(L\) (\& locally rectifies \(X_1\)). Remark that \(f\) is a Schwarz-Christoffel transformation.

“Hard” part: show that \(z\) extends to define \(\phi\). \(\square\)
Remarks

The triangular billiard has a periodic orbit iff the vector field
Remarks

The triangular billiard has a periodic orbit iff the vector field

$$2X_1 = \left[\lambda_2(x_1^2 - y_1^2) - (\lambda_2 + \lambda_3)(x_1x_2 - y_1y_2) \right] \frac{\partial}{\partial x_1} + \left[2\lambda_2 x_1 y_1 - (\lambda_2 + \lambda_3)(x_1y_2 + x_2y_1) \right] \frac{\partial}{\partial y_1} + \left[\lambda_1(x_2^2 - y_2^2) - (\lambda_1 + \lambda_3)(x_1x_2 - y_1y_2) \right] \frac{\partial}{\partial x_2} + \left[2\lambda_1 x_2 y_2 - (\lambda_1 + \lambda_3)(x_1y_2 + x_2y_1) \right] \frac{\partial}{\partial y_2}$$

has a periodic orbit.
The phase space of the billiard is three dimensional!
The phase space of the billiard is three dimensional! Since everything is homogeneous look at the induced foliations in \(\mathbb{RP}(3) \) (or in \(S^3 \)).
The phase space of the billiard is three dimensional! Since everything is homogeneous look at the induced foliations in $\mathbb{RP}(3)$ (or in S^3).

Let \mathcal{G}_λ be the foliation defined in homogeneous coordinates by:

$$\alpha := i_R i_{x_1} i_{x_2} (dx_1 \wedge dx_2 \wedge dy_1 \wedge dy_2)$$

The singular locus of \mathcal{G}_λ is $\pi(z_1 z_2(z_2 - z_1) = 0)$
Foliations in $\mathbb{RP}(3)$

The Borromean rings "=" $\text{Sing} \mathcal{G}_\lambda$.
Let $L \in \mathcal{F}_\lambda$ be fixed. If there exist $n, m \in \mathbb{Z}$ such that $n\lambda_i + m\lambda_j - \frac{1}{2} \in \mathbb{Z}$, then

$$\pi| : L \to \pi(L)$$

is a 2 : 1 map.
Foliations in $\mathbb{R}P(3)$

Let $L \in \mathcal{F}_\lambda$ be fixed. If there exist $n, m \in \mathbb{Z}$ such that $n\lambda_i + m\lambda_j - \frac{1}{2} \in \mathbb{Z}$, then

$$\pi| : L \to \pi(L)$$

is a 2 : 1 map. Else, it is a bijection. Hence we can talk about the generic leaf of G_λ.

Local picture near $\text{Sing} G_\lambda$: (up to analytic change of coordinates)

G_λ is given by $XdY - YdX$ (Open Book / Kupka phenomenon)
Let $L \in \mathcal{F}_\lambda$ be fixed. If there exist $n, m \in \mathbb{Z}$ such that $n\lambda_i + m\lambda_j - \frac{1}{2} \in \mathbb{Z}$, then

$$\pi| : L \to \pi(L)$$

is a 2 : 1 map. Else, it is a bijection. Hence we can talk about the generic leaf of \mathcal{G}_λ.

Local picture near $Sing\mathcal{G}_\lambda$: (up to analytic change of coordinates) \mathcal{G}_λ is given by

$$XdY - YdX$$

(Open Book / Kupka phenomenon)
Global picture near $\text{Sing} G_\lambda$. Let

$$
\pi : \widetilde{\mathbb{RP}(3)} \rightarrow \mathbb{RP}(3)
$$

be the blow-up along $\text{Sing}(G_\lambda)$ and \widetilde{G}_λ the foliation defined by $\pi^* \alpha$. Each component of the Borromean rings defines a "torus" T_i. Let (x, y) be local coordinates for T_i, then the trace of a leaf $L \in \widetilde{G}_\lambda$ in T_i is of the form:

$$
\lambda_i x + (1 - \lambda_i) y = k, \quad k \in \mathbb{R}
$$

In other words, $\widetilde{G}_\lambda|_{T_i}$ is defined by "parallel lines".
Global picture near $Sing \mathcal{G}_\lambda$. Let

$$\pi : \widehat{\mathbb{RP}(3)} \to \mathbb{RP}(3)$$

be the blow-up along $Sing(\mathcal{G}_\lambda)$ and $\widetilde{\mathcal{G}}_\lambda$ the foliation defined by $\pi^* \alpha$. Each component of the Borromean rings defines a “torus” T_i.
Global picture near $\text{Sing} \mathcal{G}_\lambda$. Let

$$\pi : \mathbb{RP}(3) \to \mathbb{RP}(3)$$

be the blow-up along $\text{Sing}(\mathcal{G}_\lambda)$ and $\widetilde{\mathcal{G}}_\lambda$ the foliation defined by $\pi^* \alpha$. Each component of the Borromean rings defines a “torus” T_i. Let (x, y) be local coordinates for T_i, then the trace of a leaf $L \in \widetilde{\mathcal{G}}_\lambda$ in T_i is of the form:

$$\lambda_i x + (1 - \lambda_i) y = k, \quad k \in \mathbb{R}$$

In other words, $\widetilde{\mathcal{G}}_\lambda|_{T_i}$ is defined by “parallel lines”.
Let \mathcal{G}_0 be the foliation on $\mathbb{RP}(3)$ defined by X_1.
Let \(G_0 \) be the foliation on \(\mathbb{RP}(3) \) defined by \(X_1 \). Remark that \(\text{Sing}(G_0) \subset \text{Sing}(G) \).
Let \mathcal{G}_0 be the foliation on $\mathbb{RP}(3)$ defined by X_1. Remark that $\text{Sing}(\mathcal{G}_0) \subset \text{Sing}(\mathcal{G})$. Since X_1 restricted to the tangent cone is conjugated to $\text{Re}(z^2 \frac{\partial}{\partial z})$, $\text{Sing}(\mathcal{G}_0)$ is given by:

\[p_1 = [1 : 0 : 0 : 0] \quad p_2 = [0 : 0 : 1 : 0] \quad p_3 = [1 : 0 : 1 : 0] \]
Foliations in $\mathbb{RP}(3)$

Let \mathcal{G}_0 be the foliation on $\mathbb{RP}(3)$ defined by X_1. Remark that $\text{Sing}(\mathcal{G}_0) \subset \text{Sing}(\mathcal{G})$. Since X_1 restricted to the tangent cone is conjugated to $\text{Re}(z^2 \frac{\partial}{\partial z})$, $\text{Sing}(\mathcal{G}_0)$ is given by:

\[
p_1 = [1 : 0 : 0 : 0] \quad p_2 = [0 : 0 : 1 : 0] \quad p_3 = [1 : 0 : 1 : 0]
\]

Local picture near $\text{Sing}(\mathcal{G}_0)$. The foliation is conjugated to the foliation defined by

\[
\lambda_j(x + x^3) \frac{\partial}{\partial x} + [-y + x(\ldots)] \frac{\partial}{\partial y} + [-z + x(\ldots)] \frac{\partial}{\partial z}
\]
Let \mathcal{G}_0 be the foliation on $\mathbb{RP}(3)$ defined by X_1. Remark that $\text{Sing}(\mathcal{G}_0) \subset \text{Sing}(\mathcal{G})$. Since X_1 restricted to the tangent cone is conjugated to $\text{Re}(z^2 \frac{\partial}{\partial z})$, $\text{Sing}(\mathcal{G}_0)$ is given by:

$$p_1 = [1 : 0 : 0 : 0] \quad p_2 = [0 : 0 : 1 : 0] \quad p_3 = [1 : 0 : 1 : 0]$$

Local picture near $\text{Sing}(\mathcal{G}_0)$. The foliation is conjugated to the foliation defined by

$$\lambda_j(x + x^3) \frac{\partial}{\partial x} + [-y + x(\ldots)] \frac{\partial}{\partial y} + [-z + x(\ldots)] \frac{\partial}{\partial z}$$

Remark the invariant (local) manifold $\{x = 0\}$!
¡Muchas gracias a todos y feliz Navidad!

vielen Dank und schöne Weihnachten!