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1 Introduction

An origami is a combinatorial object (see section 2) that defines a translation
surface (i.e. all transition maps are translations) of some genus g. Using this
one can construct a certain affine complex curve in the moduli space Mg of
regular projective complex curves of genus g. This curve is a Teichmüller curve,
i.e. the image of a complex geodesic in the corresponding Teichmüller space Tg.
In general such a Teichmüller curve is defined up to birationality by a discrete
subgroup of SL2(R), the Veech group. In the case of origamis the Veech group
is a finite index subgroup of SL2(Z).

In this article we study such origami Veech groups. We calculate the Veech
groups for some infinite sequences of origamis. In particular we show that the
well known congruence groups

±Γ1(2k) =
{ (

a b
c d

)
∈ SL2(Z)|a ≡ ±1, b ≡ 0, d ≡ ±1 mod 2k

}

occur for odd k ∈ N. Furthermore, we construct for each g ≥ 2 origamis of
genus g with Veech group ±Γ(2). This shows in particular that in each moduli
space Mg (g ≥ 2) there is a Teichmüller curve defined by an origami that is
birational to the projective line without three points. With a variant of this
construction one obtains a projective line without two points in Mg .

We state the basic definitions that we use and our main tool in section 2. In
section 3 we give some helpful properties for calculating Veech groups. Finally,
in sections 4 and 5 we obtain the results listed above.

Acknowledgements: I would like to thank Frank Herrlich, my supervisor, for
helpful discussions and suggestions, and Pierre Lochak for useful comments.

2 Veech groups of Origamis

We follow mostly the notations used in [S]. For more details and further infor-
mation about the general context of origamis (also called square tiled surfaces)
and Teichmüller curves see e.g. the references therein.

An origami can be defined as follows: Take finitely many copies of the euclid-
ian unit square and glue them such that each left edge of a square is identified
with a right edge and each upper edge with a lower one and vice versa. Thus
one obtains a closed surface X . We restrict to the cases where this surface is
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connected. This definition by giving simple rules that define a combinatorial
object gave rise to the name origami introduced in [L].

Example 1. : An origami with 4 squares:

1 2 3 4

a b c d

b a d c

e e

* * *

* *@ @ @

@ @

After identifying edges labeled by same letter one obtains a closed surface X of
genus 2: it is divided into 4 squares with 8 edges (after identification) and the
two vertices ∗ and @. Hence the Euler characteristic is −2 and the genus is 2.

If one numbers the squares then the origami is given by two permutations σa

and σb, where σa and σb indicate how the vertical and the horizontal edges are
glued. In example 1 we have σa = (1 2 3 4) and σb = (1 2)(3 4).

The images of the squares on the surface X define a covering p from X to the
torus E, where E is obtained as origami by glueing opposite sides of one square.
The vertices of this one square define one marked point ∞ on E and the covering
p : X → E is ramified at most over this point ∞. The degree of the covering
is the number of squares and the preimages of ∞ on X are the vertices of the
square tiling. In example 1 we have a covering of degree 4 ramified in the two
points ∗ and @.
If E∗ := E − {∞} and X∗ := X − p−1(∞), then p : X∗ → E∗ is a finite
unramified covering of the punctured torus. Conversely, each finite unramified
covering p : X∗ → E∗ defines an origami.

By the universal covering theorem, the fundamental group π1(X
∗) of X∗ is em-

bedded via p into the fundamental group π1(E
∗) of E∗. The group π1(E

∗) is
isomorphic to F2 := F2(x, y), the free group in the two generators x and y. We
take the homotopy class of a horizontal closed path on E∗ to be x and that of
a vertical one to be y.
The subgroup U ∼= π1(X

∗) of F2 that we obtain in this way in example 1 – if we
choose the base point in the first square – is U =< xy, yx−1, x2yx−3, x3yx−2, x4 >.
The given figure is simply connected, thus paths corresponding to the identifi-
cations of edges define a set of generators for the fundamental group.

An origami defines translation structures - i.e. an atlas of charts such that all
transition maps are translations - on the surface X∗ as follows: Take a trans-
lation structure on E∗ and lift it via p. For the purpose of this paper we may
restrict to the translation structure on E∗ which one obtains by identifying E∗

2



with C/Λ0 where Λ0 is the lattice Z ⊕ Zi in C.

For an origami O one calls

Aff+(O) := {f : X∗ → X∗|f orientation preserving affine diffeomorphism}

the affine group, where X∗ is obtained as above and the diffeomorphisms are
affine with respect to the translation structure defined as above. Here affine
means that the diffeomorphism is locally defined as a real-affine map of C ∼=
R ⊕ Ri

x+iy 7→ A∗(x+iy)+t := (ax+by)+(cx+dy)i+t, A =

(
a b
c d

)
∈ SL2(R), t ∈ C

Since all transition maps in the atlas of X∗ are translations, the matrix A is
independent of the chart and we obtain a homomorphism

der : Aff+(O) → SL2(R), f 7→ A ( with A as above).

The image Γ(O) := der(Aff+(O)) of the affine group is a discrete subgroup of
SL2(R) ([V]) called Veech group. It is the object we study in this article.

The Veech group depends on the choice of the lattice Λ0 that we made above
only up to conjugacy by a matrix in SL2(R).
Changing the lattice does not only change the translation structure on the sur-
face but also the complex structure on X defined by extending the translation
atlas on X∗ to a holomorphic atlas on X . Thus variation through all possible
lattices defines a subset of the moduli space Mg which is in fact an affine curve,
the Teichmüller curve mentioned in the introduction. This curve is birationally
equivalent to the quotient of H by the action of the Veech group (acting as
fuchsian group) (see e.g. [EG], [McM]).

The Veech group of an origami is a finite index subgroup of SL2(Z) ([GJ]). This
can be seen e.g. from the characterization of Veech groups of origamis given in
[S]. We will state it in the following theorem, since it is the main tool we use in
this article. We use the natural projection

β̂ : Aut+(F2) → Out+(F2) ∼= SL2(Z)

γ 7→ A :=

(
a b
c d

)

where a := ]x(γ(x)), i.e. the number of occurrences of x in γ(x), where γ(x)
is viewed as word in x and y (with x−1 counted negative!) and similarly b :=
]x(γ(y)), c := ]y(γ(x)) and d := ]y(γ(y)). Furthermore, for a subgroup U of F2

we denote by
Stab(U) := {γ ∈ Aut+(F2)|γ(U) = U}

the stabilizer of U in Aut+(F2).
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Theorem 2. Let O be an origami and the subgroup U of F2 be defined by O as
explained above. Then one has

Γ(O) = β̂(Stab(U))

3 A few properties of the stabilizer group

In this section we list some properties of the stabilizer group that we will use in
the next sections. By N E H we denote that N is a normal subgroup of H .

Let U be a subgroup of F2. Then U defines three subgroups of F2 as follows:

Norm(U) := {w ∈ F2|wUw−1 = U}, the normalizer of U in F2

<< U >>F2
:= < wuw−1|w ∈ F2, u ∈ U >, the normal closure of U in F2

NT(U) := ∩w∈F2
wUw−1, the biggest subgroup N of U that is normal in F2

The properties listed in the following remark are easily verified.

Remark 3. Let U be a subgroup of F2, Ui with i ∈ I a family of subgroups of
F2 and γ an automorphism in Aut+(F2). One has the following properties:

1. Stab(U) ⊆ Stab(Norm(U)),

2. Stab(U) ⊆ Stab(<< U >>F2
)

3.
⋂

i∈I Stab(Ui) ⊆ Stab(
⋂

i∈I Ui)

4. Stab(γ(U)) = γ ◦ Stab(U) ◦ γ−1

5. Stab(U) ⊆ Stab(NT(U))

Let now O be an origami, p : X∗ → E∗ the unramified covering and U the finite
index subgroup of F2 defined in section 2. The groups Norm(U), << U >>F2

and NT(U) are also finite index subgroups of F2 and define origamis O1, O2

and O3.
Again let p1 : X∗

1 → E∗, p2 : X∗
2 → E∗ and p3 : X∗

3 → E∗ be the unramified
coverings defined by these three origamis.
Then p1 is the unramified covering of E∗ of minimal degree such that it is covered
normally by X∗, i.e. there exists a normal unramified covering q1 : X∗ → X∗

1

with p1 ◦ q1 = p.
Similarly, p2 is the unramified covering of E∗ of maximal degree that is normal
and covered by X∗.
Finally, p3 is the minimal unramified covering of E∗ that factors through p by
a normal q3, i.e. there is a normal covering q3 of X∗ such that p ◦ q3 = p3 .

The properties of stabilizer groups listed above imply the following corollary 4
to theorem 2.
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Corollary 4. With the definitions of the last paragraph we have: The Veech
group Γ(O) of the origami O is contained in the Veech groups Γ(O1), Γ(O2) and
Γ(O3) of the origamis O1, O2 and O3.

4 X-origamis

In this section we study a sequence Ok of origamis we call X-origamis because
of their shape (see figure 1). We detect their Veech groups Γ(Ok) as congruence
groups of level 2k.

Definition 5. Let Ok be the origami with 2k squares given in figure 1, i.e. the
origami defined by the permutations

σa := (1 2 . . . 2k) ∈ S2k and σb = ((1 2)(3 4) . . . (2k − 1 2k)) ∈ S2k.

Recall from section 2 that σa gives the horizontal and σb the vertical identifica-
tions of the edges.

1 ↔ 0̄ 2 ↔ 1̄ 3 ↔ 2̄ · · · 2k

a1 a2 . . . a2k−1 a2k

a2 a1 . . . a2k a2k−1

a0 a0

• • • •

• • •* * * *

** *

Figure 1

As in example 1 edges with same labels are identified. We obtain a closed surface
Xk. It is divided into 2k squares with 4k edges and two vertices • and ∗. The
genus of Xk is k. Recall from section 2 that Ok defines an unramified covering
pk : X∗

k → E∗ of degree 2k. The fundamental group Uk = π1(X
∗
k ) ⊆ π1(E

∗) =
F2 is – if we choose the base point in the first square:

Uk =< x2k , xy, yx−1, x2yx−3, x3yx−2, . . . , x2k−2yx−(2k−1), x2k−1yx−(2k−2) >

Proposition 6. The Veech group of Ok is

Γ(Ok) = {

(
a b
c d

)
∈ SL2(Z)|2b ≡ 0, a+b ≡ ±1 mod 2k and a+c ≡ b+d ≡ 1 mod 2}.

In particular we have

• k odd ⇒ Γ(Ok) is conjugated to ±Γ1(2k) (defined as in the introduction).

• k even ⇒ Γ(Ok) has the same index as ±Γ1(2k) but is not conjugated.

Proof. The proof is divided into the following steps:
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1. One obtains for the baby origami O1 with two squares:

Γ(O1) = {

(
a b
c d

)
∈ SL2(Z)|a + c, b + d odd }

and all Veech groups are contained in the first one, i.e. Γ(Ok) ⊆ Γ(O1).

2. The group Uk can be described alternatively as

Uk = {w ∈ F2|]x(w) + ∆y is divisible by 2k}.

(precise definitions see below)

3. We solve the problem first in the principal congruence group Γ(2):

Γ(Ok) ∩ Γ(2) = {

(
a b
c d

)
∈ Γ(2)|2b ≡ 0, a + b ≡ ±1 mod 2k}

4. Using 3. we show that Γ(Ok) is the group claimed in the proposition.

5. Using 4. we show that Γ(Ok) has the same index in SL2(Z) as ±Γ1(2k)
and they are conjugated iff k is odd.

1.:

We consider the first element of the sequence O1:

a b

b a

c c

* *

*•

•

•

The corresponding subgroup of F2 is

U1 =< x2, xy, yx−1 >=< x2, xy, y2 >= {w ∈ F2| le(w) is even},

where le(w) denotes the length of w as word in x and y.
Hence for an automorphism γ ∈ Aut+(F2) we have:

γ(U1) = U1 ⇔ γ preserves the parity of the length of words

⇔ le(γ(x)) and le(γ(y)) are odd

⇔ ]x(γ(x)) + ]y(γ(x)) odd and ]x(γ(y)) + ]y(γ(y)) odd

⇔ a + c and b + d are odd for

(
a b
c d

)
= β̂(γ),

with β̂ defined before theorem 2
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By Theorem 2 the Veech group Γ(O1) = β̂(Stab(U1)). This proves the first part
of 1.

Furthermore, U1 contains Uk for all k and it is the normal closure of Uk in F2,
i.e. U1 = << Uk >>F2

. This can be seen by checking the three generators of
U1: y2 and xy are already elements of Uk and x2 = x(xy)x−1(xy−1) with xy
and xy−1 in Uk is also in << Uk >>F2

.
Using corollary 4 we obtain the second part of 1.

2.:

We identify the 2k squares of the origami Ok with the elements of

Z/2kZ = {0̄, 1̄, . . . , 2k − 1}.

The group F2 acts from the right on the set of the squares as follows: For
w ∈ F2 = π1(E

∗) and ā one of the squares, lift the path w on E∗ via the
covering pk to a path on X∗

k with its starting point in the square ā. Let b̄ be
the square in which the ending point of the lifted path lies. Then define

ā · w := b̄.

Since we had chosen the base point for Uk = π1(X
∗
k ) in the square 0̄ one has for

v, w in F2 by definition:

w ∈ Uk ⇔ 0̄ · w = 0̄ and vwv−1 ∈ Uk ⇔ b̄ · w = b̄ with b̄ := 0̄ · v (1)

Let ā be in Z/2kZ, then x, y, x−1, y−1 act on ā in the following way:

ā · x = a + 1 ā · x−1 = a − 1

ā · y =

{
a + 1 , if ā even
a − 1 , if ā odd .

ā · y−1 =

{
a + 1 , if ā even
a − 1 , if ā odd .

(2)

Here we use that x2k is in Uk.

Now, we obtain the action of any w in F2 on Z/kZ: Each x±1 contributes ±1,
each y±1 contributes 1 or −1 depending on the parity of the position of y±1 in
w.

Definition 7. For w ∈ F2 let ]|y|(w| odd) be the total number of occurrences of
y and y−1 in w at an odd position (y−1 counted positive!). Similarly, denote by
]|y|(w| even) the number of occurrences of y and y−1 in w at an even position.
Furthermore define

∆y(w) := ]|y|(w| odd) − ]|y|(w| even).

E.g. for w := xyxy−1x2y−1 one has ]|y|(w| odd) = 1, ]|y|(w| even) = 2 and
∆y(w) = −1.
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Using (2) we obtain

ā · w =

{
a + ]x(w) + ∆y(w) , if ā even

a + ]x(w) − ∆y(w) , if ā odd .
(3)

Since Uk = {w ∈ F2| 0̄ · w = 0̄}, 2. follows from (3).

3.:

Before restricting to Γ(2) we stay in the general setting and observe that it
is sufficient to consider the two generators xy and y2. More precisely: For
γ ∈ Aut+(F2)

γ ∈ Stab(Uk) ⇔ γ ∈ Stab(U1) and γ(y2), γ(xy) ∈ Uk (4)

⇒ follows by 1. and the definition of Stab(Uk).
⇐ is true since Uk is the subgroup of U1 consisting of those words in the three
generators w1 := x2, w2 := xy and w3 := y2 of U1 for which the number of
occurrences of w1 is divisible by k (w−1

1 counted negative), i.e.

Uk = {w = w(w1, w2, w3) ∈ U1| ]w1
(w) is divisible by k}.

Uk is generated as normal subgroup of U1 by wk
1 , w2 and w3. Thus it is sufficient

to check x2k , xy and y2 in order to find out, if a given γ ∈ Stab(U1) fixes Uk.
But γ(x2k) = γ(w1)

k and the number of occurrences of each generator in it is
divisible by k. Hence it follows (4).

As next step observe that in order to check whether A is in Γ(Ok) it is sufficient

to consider one preimage of A under β̂: Let A be in SL2(Z) and γ0 ∈ Aut+(F2)

such that β̂(γ0) = A. Since β̂ is the quotient map Aut+(F2) → Out+(F2) ∼=

SL2(Z), an automorphism γ is mapped to A by β̂ iff it is conjugated to γ0. Thus
we have :

A ∈ Γ(Ok)
thm.2
⇔ ∃γ ∈ Stab(Uk) : β̂(γ) = A ⇔ ∃w ∈ F2 : wγ0w

−1 ∈ Stab(Uk)

(1)
⇔ ∃b̄ ∈ Z/(2kZ) : b̄ · γ0(u) = b̄ for all u ∈ Uk. (5)

Observe that Norm(Uk) = U1 (by checking that it contains the three generators
of U1). Thus Norm(Uk) has index 2 in F2 and 1, x are coset representatives.
Thus in (5) it is sufficient to consider b̄ ∈ {0̄, 1̄}. Together with (4) it follows
that

A ∈ Γ(Ok) ⇔ (0̄ · γ0(y
2) = 0̄ and 0̄ · γ0(xy) = 0̄ ) or

(1̄ · γ0(y
2) = 1̄ and 1̄ · γ0(xy) = 1̄ ). (6)

Now, suppose

A =

(
a b
c d

)
∈ Γ(2) =< A1 :=

(
1 2
0 1

)
, A2 :=

(
1 0
2 1

)
, A3 :=

(
−1 0
0 −1

)
> . (7)
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We define the three automorphisms

γ1 : x 7→ x, y 7→ x2y γ2 : x 7→ xy2, y 7→ y γ−I : x 7→ x−1, y 7→ y−1

and set
G(2) :=< γ1, γ2, γ−I > .

Thus β̂(G(2)) = Γ(2). Let γ0 be in G(2) with β̂(γ0) = A.
We will use in the following the fact proven below in lemma 8 that G(2) respects
∆y, i.e.:

∀γ ∈ G(2), w ∈ F2 : ∆y(γ(w)) = ∆y(w).

Then we have:

0̄ · γ(xy) =
(3)
= 0 + ]x(γ(xy)) + ∆y(γ(xy))

lem.8
= ]x(γ(x)) + ]x(γ(y)) + ∆y(xy) = a + b − 1.

Similarly one obtains

1̄ · γ(xy) = 1̄ + a + b + 1

0̄ · γ(y2) = 2b and 1̄ · γ(y2) = 1̄ + 2b

Thus by (6) A ∈ Γ(Ok) iff 2b ≡ 0 and a + b ≡ ±1 modulo 2k. This proves 3.

4.:

Recall that by 1. the Veech group Γ(Ok) is a subgroup of Γ(O1). Suppose

that A =

(
a b
c d

)
is in Γ(O1)\Γ(2). The index of Γ(2) in Γ(O1) is 2, since

by 1. any element of Γ(O1) maps to either Ī =

(
1 0
0 1

)
or S̄ =

(
0 −1
1 0

)
in

SL2(Z)/Γ(2) = SL2(Z/2Z). Therefore A has a decomposition A = B · S for
some matrix B in Γ(2). We define the automorphism

γs : x 7→ y, y 7→ x−1,

then γs is a preimage of S under β̂. Furthermore, we take a preimage γB of B
in G(2), then γA := γB ◦ γS is a preimage of A. One obtains:

0̄ · γA(xy)
(3)
= 0 + ]x(γA(xy)) + ∆y(γB(yx−1))

Lem8
= a + b + 1

Similarly, one calculates 0̄·γA(y2), 1̄·γA(xy) and 1̄·γA(y2) and obtains altogether:

0̄ · γA(xy) = a + b + 1 0̄ · γA(y2) = 2b

1̄ · γA(xy) = 1̄ + a + b − 1 1̄ · γA(y2) = 1̄ + 2b

Thus it follows that A ∈ Γ(Ok) iff 2b ≡ 0 mod 2k and a + b ≡ ∓1 mod 2k.
Together with 1. and 3. this finishes the proof of 4.
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5.:

In order to obtain that Γ(Ok) and ±Γ1(2k) have the same index in SL2(Z), we
use the fact that Γ(2k) is contained in Γ(Ok) as well as in ±Γ1(2k). Therefore
it is sufficient to show that their images in SL2(Z/2kZ) ∼= SL2(Z)/Γ(2k) have
the same number of elements.
Using 4. we obtain that the image of Γ(Ok) in SL2(Z) is:

{

(
±1 0
e ±1

)
,

(
±1 + k k

o ±1 + k

)
|e, o ∈ Z/2kZ, e even , o odd }, if k odd (8)

{

(
±1 0
e ±1

)
,

(
±1 + k k

e′ ±1 + k

)
|e, e′ ∈ Z/2kZ, e, e′ even }, if k even (9)

Thus the image has in both cases 4k elements. The image of ±Γ1(2k) consists
of 4k elements as well.

Observe by (9) that Γ(Ok) is contained in ±Γ(2) if k is even. But Γ(2) is normal
and does not contain ±Γ1(2k). Therefore Γ(O2) is not conjugated to ±Γ1(2k)
if k is even.
For k odd, one can check by a calculation in SL2(Z/2kZ) that

(
1 k
0 1

)
Γ1(2k)

(
1 −k
0 1

)
= Γ(Ok). (10)

Lemma 8. The number ∆y(w) = ]|y|(w| odd)−]|y|(w| even) is invariant under
G(2) =< γ1, γ2, γ−I >, i.e. if γ is in G(2), then

∀w ∈ F2 : ∆y(γ(w)) = ∆y(w).

Proof. It is sufficient to check the claim for the generators of G(2):

γ1 : x 7→ x, y 7→ x2y, γ2 : x 7→ xy2, y 7→ y and γ−I : x 7→ x−1, y 7→ y−1

Consider γ := γ1: Let w be an arbitrary element in F2, thus w is a reduced
word in the four letters x,y, x−1, y−1: w = w(x, y, x−1, y−1) and γ(w) =
w(x, x2y, x−1, y−1x−2).
Observe that for the words of replacement x, x2y, x−1, y−1x−2 the value of ∆y

is the same as for the original words x, y, x−1 and y−1, their length is odd and
that reduction also does not change the value of ∆y. Hence ∆y(γ1(w)) = ∆y(w).
With the same arguments this is true for γ2 and γ−I . Thus the claim holds.

Using this sequence of origamis one can construct origamis having Veech group
±Γ1(2k) (for k odd). In the following corollary, we use the automorphism
γ : x 7→ x, y 7→ x−ky.

Corollary 9. Let k be odd. Define Vk := γ(Uk) with the group Uk defined in
proposition 6. Call Pk the origami that is defined by the finite index subgroup
Vk of F2. Then Γ(Pk) = ±Γ1(2k).
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Proof. By remark 3 we have Stab(Vk) = γ ◦ Stab(Uk) ◦ γ−1. By theorem 2 it
follows that

Γ(Pk) = β̂(γ)Γ(Ok)β̂(γ−1) =

(
1 −k
0 1

)
Γ(Ok)

(
1 k
0 1

)
(10)
= ±Γ1(2k)

5 Stair-origamis

In this section we consider two infinite sequences Gk and Stk of origamis of
genus k. We show for both that all origamis in the sequence have the same
Veech group. Because of their shape (see figures 2 and 3) they are called stair
origamis.

The smallest example of the two sequences, the stairs with 3 and 4 squares,
appear e.g. in [M], where the equations for the Teichmüller curves defined by
these two origamis are calculated. The stair with three squares is because of its
shape also called L-origami and is generalized in another sequence with origamis
all in genus 2 (see e.g [HL], [S]).
The stairs with an odd number of squares occur in [H], where they are used to
construct origamis that cover it having Veech group SL2(Z).

Definition 10. Let Gk be the origami with 2k squares (k ≥ 2) in figure 2 given
by the permutations

σa := (1 2) . . . (2k − 1 2k) and σb := (2 3) . . . (2k − 2 2k − 1) ∈ S2k

1

· · ·

2k

• •
• •

• •
• •

∗
∗ ∗
∗ ∗

∗

Figure 2

Here opposite edges are identified. One obtains a closed surface with the two
marked points • and ∗. Its genus is k. The fundamental group is

Uk =< y, (xy)k−1xyx−1(xy)−(k−1), (xy)jx2(xy)−j ,

(xy)ixy2x−1(xy)−i|j ∈ {0, . . . , k − 1}, i ∈ {0, . . . , k − 2} >

Proposition 11. The Veech group Γ(Gk) is for all k ∈ N the principal congru-
ence group Γ(2).
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Proof. The proof is divided into two parts: In the first part we show Γ(2) is a
subgroup of Γ(Gk); in the second part we show that it is not bigger.

Γ(Gk) is a subgroup of Γ(2):

Recall that the group Γ(2) is generated by the three matrices A1, A2, A3 given

in (7). Take again the three preimages under β̂:

γ1 :

{
x 7→ x
y 7→ x2y

, γ2 :

{
x 7→ xy2

y 7→ y
and γ3 :

{
x 7→ x−1

y 7→ y−1

We show that γi(Uk) = Uk.

Observe that Uk contains N :=<< x2, y2 >>F2
. More precisely, Uk is generated

by N and the two elements y and cyc−1 with c := (xy)k−1x.
Observe furthermore, that γi(N) = N for i = 1, 2, 3:
E.g. γ1(x

2) = x2 ∈ N and γ1(y
2) = x2yx2y = y((y−1x2y)x2y2)y−1 ∈ N . This

works similarly for i = 2 and i = 3. Thus we have γ(N) = N for all γ ∈ G(2).

Since N E F2 and N ⊆ Uk, it follows that

∀n ∈ N, w, v ∈ F2 : wnv = uwv with some u ∈ Uk. (11)

One obtains e.g.:
γ1(y) = x2y ∈ Uk and

γ1(cyc−1) = (γ1(xy))k−1xx2yx−1(γ1(xy))−(k−1) = (x3y)k−1xx2yx−1(x3y)−(k−1) (11)
=

u(xy)k−1xyx−1(xy)−(k−1) = ucyc−1 for some u ∈ U . Thus γ1(Uk) = Uk.
This works similarly for i = 2, i = 3, which finishes the proof that Γ(2) ⊆ Γ(Gk).

Γ(2) is the whole group Γ(Gk):

The matrices

I =

(
1 0
0 1

)
, B1 =

(
1 1
0 1

)
, B2 =

(
0 −1
1 0

)
, B3 =

(
1 −1
1 0

)
,

B4 =

(
0 −1
1 1

)
, B5 =

(
1 0
1 1

)

form a system of coset representatives of Γ(2) in SL2(Z). Thus it remains to
show, that B1, B2, B3, B4 and B5 are not in Γ(Gk).
Observe that all generators and thus all elements of Uk contain an even number
of occurrences of x. Since y is in Uk, the number ]x(γ(y)) has to be even for
an automorphism γ in Stab(Uk). This implies that the top right entry of an
element of Γ(Gk) has to be even. From this argument it follows that B1, B2,
B3 and B4 are not in Γ(Gk).
It remains to check B5. We take the preimage γ0 : x 7→ xy, y 7→ y in Aut+(F2)

of B5 under β̂.
Then we have for each other preimage γ := w · γ0 · w

−1 (w ∈ F2):
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γ(xy−1xy−1) = wγ0(xy−1xy−1)w−1 = wx2w−1 ∈ N ⊆ Uk.
But xy−1xy−1 is not in Uk, thus γ 6∈ Stab(Uk). From this it follows that
B5 6∈ Γ(Gk).

Definition 12. Let Stk be the origami with 2k − 1 (k ≥ 2) squares in figure 3
given by the permutations

σa := (1 2) . . . (2k − 3 2k − 2) and σb := (2 3) . . . (2k − 2 2k − 1) ∈ S2k−1

1

· · ·

2k−1

• •

• •

• •

• •

•

• •

• •

•

• •

Figure 3

Again opposite edges are identified. One obtains a closed surface with one
marked point: •. Its genus is k. The fundamental group is

Uk =< y, (xy)k−1x(xy)−(k−1), (xy)jx2(xy)−j ,

(xy)jxy2x−1(xy)−j | j ∈ {0, . . . , k − 2} >

Proposition 13. The Veech group Γ(Stk) is for all k ∈ N the congruence group

Γ :=
{ (

a b
c d

)
∈ SL2(Z)|a + c and b + d odd

}
.

Proof. We have

A ∈ Γ ⇔ A is sent to the image of I =

(
1 0
0 1

)
or B2 =

(
0 −1
1 0

)

in SL2(Z)/Γ(2) = SL2(Z/2Z) under the natural projection. Thus Γ is generated
as normal subgroup of SL2(Z) by Γ(2) and the matrix B2.
Take the automorphisms γ1, γ2 and γ3 defined as in the proof of proposition 11
and take the automorphism γ4 : x 7→ y, y 7→ x−1 as preimage of B2 under β̂.
Observe that Uk again contains N =<< x2, y2 >>F2

and is generated by N
and the two elements y and cxc−1 with c := (xy)k−1.
We have already seen in the last proof that γi(N) = N for i ∈ {1, 2, 3} and it
is easily seen that γ4(N) = N . Furthermore, one can check similarly as in the
last proof that γi(y) and γi(cyc−1) is in Uk. Hence Γ is contained in the Veech
group of Stk.
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Finally we show that B1 6∈ Γ(Stk): Take one fixed preimage of B1 under β̂:
γ5 : x 7→ x, y 7→ xy. Then for each conjugated automorphism γ := wγ5w

−1

(w ∈ F2) one has γ(x−1yx−1y) = wy2w−1 ∈ Stk, but x−1yx−1y 6∈ Stk. Thus
Γ(Stk) 6= SL2(Z). It contains Γ which has index 3. Thus it is equal to Γ.

Since H/Γ(2) ∼= P1\{0, 1,∞} and H/Γ ∼= P1\{0, 1} – where Γ is from proposition
13 and the two groups act as fuchsian groups on H – we obtain the following
result:

Corollary 14. For each g ≥ 2, there is an origami O of genus g such that
H/Γ(O) is the affine line without three points and for each g ≥ 2 there is an
origami O such that H/Γ(O) is the affine line without 2 marked points.

As mentioned in section 2 this implies in particular that the Teichmüller curve
defined by these origamis is birationally to the projective line without three
points for the stair-origamis Gk, respectively to the projective line without two
points for Stk.
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