Examples for Veech groups of origamis

Gabriela Schmithüsen

1 Introduction

An origami is a combinatorial object (see section 2) that defines a translation surface (i.e. all transition maps are translations) of some genus g. Using this one can construct a certain affine complex curve in the moduli space M_g of regular projective complex curves of genus g. This curve is a *Teichmüller curve*, i.e. the image of a complex geodesic in the corresponding Teichmüller space T_g . In general such a Teichmüller curve is defined up to birationality by a discrete subgroup of $SL_2(\mathbb{R})$, the *Veech group*. In the case of origamis the Veech group is a finite index subgroup of $SL_2(\mathbb{Z})$.

In this article we study such origami Veech groups. We calculate the Veech groups for some infinite sequences of origamis. In particular we show that the well known congruence groups

$$\pm\Gamma_1(2k) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) | a \equiv \pm 1, b \equiv 0, d \equiv \pm 1 \mod 2k \right\}$$

occur for odd $k \in \mathbb{N}$. Furthermore, we construct for each $g \geq 2$ origamis of genus g with Veech group $\pm \Gamma(2)$. This shows in particular that in each moduli space M_g ($g \geq 2$) there is a Teichmüller curve defined by an origami that is birational to the projective line without three points. With a variant of this construction one obtains a projective line without two points in M_q .

We state the basic definitions that we use and our main tool in section 2. In section 3 we give some helpful properties for calculating Veech groups. Finally, in sections 4 and 5 we obtain the results listed above.

Acknowledgements: I would like to thank Frank Herrlich, my supervisor, for helpful discussions and suggestions, and Pierre Lochak for useful comments.

2 Veech groups of Origamis

We follow mostly the notations used in [S]. For more details and further information about the general context of origamis (also called *square tiled surfaces*) and Teichmüller curves see e.g. the references therein.

An *origami* can be defined as follows: Take finitely many copies of the euclidian unit square and glue them such that each left edge of a square is identified with a right edge and each upper edge with a lower one and vice versa. Thus one obtains a closed surface X. We restrict to the cases where this surface is connected. This definition by giving simple rules that define a combinatorial object gave rise to the name *origami* introduced in [L].

Example 1. : An origami with 4 squares:

After identifying edges labeled by same letter one obtains a closed surface X of genus 2: it is divided into 4 squares with 8 edges (after identification) and the two vertices * and @. Hence the Euler characteristic is -2 and the genus is 2.

If one numbers the squares then the origami is given by two permutations σ_a and σ_b , where σ_a and σ_b indicate how the vertical and the horizontal edges are glued. In example 1 we have $\sigma_a = (1 \ 2 \ 3 \ 4)$ and $\sigma_b = (1 \ 2)(3 \ 4)$.

The images of the squares on the surface X define a covering p from X to the torus E, where E is obtained as origami by glueing opposite sides of **one** square. The vertices of this one square define one marked point ∞ on E and the covering $p: X \to E$ is ramified at most over this point ∞ . The degree of the covering is the number of squares and the preimages of ∞ on X are the vertices of the square tiling. In example 1 we have a covering of degree 4 ramified in the two points * and @.

If $E^* := E - \{\infty\}$ and $X^* := X - p^{-1}(\infty)$, then $p : X^* \to E^*$ is a finite unramified covering of the punctured torus. Conversely, each finite unramified covering $p : X^* \to E^*$ defines an origami.

By the universal covering theorem, the fundamental group $\pi_1(X^*)$ of X^* is embedded via p into the fundamental group $\pi_1(E^*)$ of E^* . The group $\pi_1(E^*)$ is isomorphic to $F_2 := F_2(x, y)$, the free group in the two generators x and y. We take the homotopy class of a horizontal closed path on E^* to be x and that of a vertical one to be y.

The subgroup $U \cong \pi_1(X^*)$ of F_2 that we obtain in this way in example 1 – if we choose the base point in the first square – is $U = \langle xy, yx^{-1}, x^2yx^{-3}, x^3yx^{-2}, x^4 \rangle$. The given figure is simply connected, thus paths corresponding to the identifications of edges define a set of generators for the fundamental group.

An origami defines *translation structures* - i.e. an atlas of charts such that all transition maps are translations - on the surface X^* as follows: Take a translation structure on E^* and lift it via p. For the purpose of this paper we may restrict to the translation structure on E^* which one obtains by identifying E^*

with \mathbb{C}/Λ_0 where Λ_0 is the lattice $\mathbb{Z} \oplus \mathbb{Z}i$ in \mathbb{C} .

For an origami O one calls

 $\operatorname{Aff}^+(O) := \{f : X^* \to X^* | f \text{ orientation preserving affine diffeomorphism}\}$

the affine group, where X^* is obtained as above and the diffeomorphisms are affine with respect to the translation structure defined as above. Here affine means that the diffeomorphism is locally defined as a real-affine map of $\mathbb{C} \cong \mathbb{R} \oplus \mathbb{R}i$

$$x+iy \mapsto A*(x+iy)+t := (ax+by)+(cx+dy)i+t, \ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{R}), t \in \mathbb{C}$$

Since all transition maps in the atlas of X^* are translations, the matrix A is independent of the chart and we obtain a homomorphism

der : Aff⁺(O)
$$\rightarrow$$
 SL₂(\mathbb{R}), $f \mapsto A$ (with A as above).

The image $\Gamma(O) := \operatorname{der}(\operatorname{Aff}^+(O))$ of the affine group is a discrete subgroup of $\operatorname{SL}_2(\mathbb{R})$ ([V]) called *Veech group*. It is the object we study in this article.

The Veech group depends on the choice of the lattice Λ_0 that we made above only up to conjugacy by a matrix in $SL_2(\mathbb{R})$.

Changing the lattice does not only change the translation structure on the surface but also the complex structure on X defined by extending the translation atlas on X^* to a holomorphic atlas on X. Thus variation through all possible lattices defines a subset of the moduli space M_g which is in fact an affine curve, the *Teichmüller curve* mentioned in the introduction. This curve is birationally equivalent to the quotient of \mathbb{H} by the action of the Veech group (acting as fuchsian group) (see e.g. [EG], [McM]).

The Veech group of an origami is a finite index subgroup of $SL_2(\mathbb{Z})$ ([GJ]). This can be seen e.g. from the characterization of Veech groups of origamis given in [S]. We will state it in the following theorem, since it is the main tool we use in this article. We use the natural projection

$$\hat{\beta} : \operatorname{Aut}^+(F_2) \to \operatorname{Out}^+(F_2) \cong \operatorname{SL}_2(\mathbb{Z})$$

 $\gamma \mapsto A := \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

where $a := \sharp_x(\gamma(x))$, i.e. the number of occurrences of x in $\gamma(x)$, where $\gamma(x)$ is viewed as word in x and y (with x^{-1} counted negative!) and similarly $b := \sharp_x(\gamma(y))$, $c := \sharp_y(\gamma(x))$ and $d := \sharp_y(\gamma(y))$. Furthermore, for a subgroup U of F_2 we denote by

$$\operatorname{Stab}(U) := \{ \gamma \in \operatorname{Aut}^+(F_2) | \gamma(U) = U \}$$

the stabilizer of U in $\operatorname{Aut}^+(F_2)$.

Theorem 2. Let O be an origami and the subgroup U of F_2 be defined by O as explained above. Then one has

$$\Gamma(O) = \hat{\beta}(\operatorname{Stab}(U))$$

3 A few properties of the stabilizer group

In this section we list some properties of the stabilizer group that we will use in the next sections. By $N \leq H$ we denote that N is a normal subgroup of H.

Let U be a subgroup of F_2 . Then U defines three subgroups of F_2 as follows:

 $\begin{array}{rcl} \operatorname{Norm}(U) &:= & \{w \in F_2 | w U w^{-1} = U\}, \text{ the normalizer of } U \text{ in } F_2 \\ << U >>_{F_2} &:= & < w u w^{-1} | w \in F_2, u \in U >, \text{ the normal closure of } U \text{ in } F_2 \\ \operatorname{NT}(U) &:= & \cap_{w \in F_2} w U w^{-1}, \text{ the biggest subgroup } N \text{ of } U \text{ that is normal in } F_2 \end{array}$

The properties listed in the following remark are easily verified.

Remark 3. Let U be a subgroup of F_2 , U_i with $i \in I$ a family of subgroups of F_2 and γ an automorphism in $Aut^+(F_2)$. One has the following properties:

- 1. $Stab(U) \subseteq Stab(Norm(U)),$
- 2. $Stab(U) \subseteq Stab(<< U >>_{F_2})$
- 3. $\bigcap_{i \in I} Stab(U_i) \subseteq Stab(\bigcap_{i \in I} U_i)$
- 4. $Stab(\gamma(U)) = \gamma \circ Stab(U) \circ \gamma^{-1}$
- 5. $Stab(U) \subseteq Stab(NT(U))$

Let now O be an origami, $p: X^* \to E^*$ the unramified covering and U the finite index subgroup of F_2 defined in section 2. The groups $\operatorname{Norm}(U)$, $\langle \langle U \rangle \rangle_{F_2}$ and $\operatorname{NT}(U)$ are also finite index subgroups of F_2 and define origamis O_1 , O_2 and O_3 .

Again let $p_1: X_1^* \to E^*$, $p_2: X_2^* \to E^*$ and $p_3: X_3^* \to E^*$ be the unramified coverings defined by these three origamis.

Then p_1 is the unramified covering of E^* of minimal degree such that it is covered normally by X^* , i.e. there exists a normal unramified covering $q_1 : X^* \to X_1^*$ with $p_1 \circ q_1 = p$.

Similarly, p_2 is the unramified covering of E^* of maximal degree that is normal and covered by X^* .

Finally, p_3 is the minimal unramified covering of E^* that factors through p by a normal q_3 , i.e. there is a normal covering q_3 of X^* such that $p \circ q_3 = p_3$.

The properties of stabilizer groups listed above imply the following corollary 4 to theorem 2.

Corollary 4. With the definitions of the last paragraph we have: The Veech group $\Gamma(O)$ of the origami O is contained in the Veech groups $\Gamma(O_1)$, $\Gamma(O_2)$ and $\Gamma(O_3)$ of the origamis O_1 , O_2 and O_3 .

4 X-origamis

In this section we study a sequence O_k of origamis we call X-origamis because of their shape (see figure 1). We detect their Veech groups $\Gamma(O_k)$ as congruence groups of level 2k.

Definition 5. Let O_k be the origami with 2k squares given in figure 1, i.e. the origami defined by the permutations

 $\sigma_a := (1 \ 2 \ \dots \ 2k) \in S_{2k}$ and $\sigma_b = ((1 \ 2)(3 \ 4) \ \dots \ (2k-1 \ 2k)) \in S_{2k}$.

Recall from section 2 that σ_a gives the horizontal and σ_b the vertical identifications of the edges.

As in example 1 edges with same labels are identified. We obtain a closed surface X_k . It is divided into 2k squares with 4k edges and two vertices \bullet and *. The genus of X_k is k. Recall from section 2 that O_k defines an unramified covering $p_k : X_k^* \to E^*$ of degree 2k. The fundamental group $U_k = \pi_1(X_k^*) \subseteq \pi_1(E^*) = F_2$ is – if we choose the base point in the first square:

$$U_k = \langle x^{2k}, xy, yx^{-1}, x^2yx^{-3}, x^3yx^{-2}, \dots, x^{2k-2}yx^{-(2k-1)}, x^{2k-1}yx^{-(2k-2)} \rangle$$

Proposition 6. The Veech group of O_k is

$$\Gamma(O_k) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) | 2b \equiv 0, \ a+b \equiv \pm 1 \mod 2k \text{ and } a+c \equiv b+d \equiv 1 \mod 2 \}.$$

In particular we have

- $k \text{ odd} \Rightarrow \Gamma(O_k)$ is conjugated to $\pm \Gamma_1(2k)$ (defined as in the introduction).
- $k \text{ even} \Rightarrow \Gamma(O_k)$ has the same index as $\pm \Gamma_1(2k)$ but is not conjugated.

Proof. The proof is divided into the following steps:

1. One obtains for the baby origami O_1 with two squares:

$$\Gamma(O_1) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) | a + c, b + d \text{ odd } \right\}$$

and all Veech groups are contained in the first one, i.e. $\Gamma(O_k) \subseteq \Gamma(O_1)$.

2. The group U_k can be described alternatively as

$$U_k = \{ w \in F_2 | \sharp_x(w) + \Delta_y \text{ is divisible by } 2k \}.$$

(precise definitions see below)

3. We solve the problem first in the principal congruence group $\Gamma(2)$:

$$\Gamma(O_k) \cap \Gamma(2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(2) | 2b \equiv 0, \ a+b \equiv \pm 1 \mod 2k \right\}$$

- 4. Using 3. we show that $\Gamma(O_k)$ is the group claimed in the proposition.
- 5. Using 4. we show that $\Gamma(O_k)$ has the same index in $\operatorname{SL}_2(\mathbb{Z})$ as $\pm \Gamma_1(2k)$ and they are conjugated iff k is odd.

<u>1.:</u>

We consider the first element of the sequence O_1 :

The corresponding subgroup of F_2 is

$$U_1 = \langle x^2, xy, yx^{-1} \rangle = \langle x^2, xy, y^2 \rangle = \{ w \in F_2 | le(w) \text{ is even} \},\$$

where le(w) denotes the length of w as word in x and y. Hence for an automorphism $\gamma \in Aut^+(F_2)$ we have:

$$\gamma(U_1) = U_1 \quad \Leftrightarrow \quad \gamma \text{ preserves the parity of the length of words} \\ \Leftrightarrow \quad \operatorname{le}(\gamma(x)) \text{ and } \operatorname{le}(\gamma(y)) \text{ are odd} \\ \Leftrightarrow \quad \sharp_x(\gamma(x)) + \sharp_y(\gamma(x)) \text{ odd and } \sharp_x(\gamma(y)) + \sharp_y(\gamma(y)) \text{ odd} \\ \Leftrightarrow \quad a + c \text{ and } b + d \text{ are odd for } \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \hat{\beta}(\gamma),$$

with β defined before theorem 2

By Theorem 2 the Veech group $\Gamma(O_1) = \hat{\beta}(\operatorname{Stab}(U_1))$. This proves the first part of 1.

Furthermore, U_1 contains U_k for all k and it is the normal closure of U_k in F_2 , i.e. $U_1 = \langle \langle U_k \rangle \rangle_{F_2}$. This can be seen by checking the three generators of U_1 : y^2 and xy are already elements of U_k and $x^2 = x(xy)x^{-1}(xy^{-1})$ with xy and xy^{-1} in U_k is also in $\langle \langle U_k \rangle \rangle_{F_2}$.

Using corollary 4 we obtain the second part of 1.

2.:

We identify the 2k squares of the origami O_k with the elements of

$$\mathbb{Z}/2k\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{2k-1}\}.$$

The group F_2 acts from the right on the set of the squares as follows: For $w \in F_2 = \pi_1(E^*)$ and \bar{a} one of the squares, lift the path w on E^* via the covering p_k to a path on X_k^* with its starting point in the square \bar{a} . Let \bar{b} be the square in which the ending point of the lifted path lies. Then define

$$\bar{a} \cdot w := \bar{b}.$$

Since we had chosen the base point for $U_k = \pi_1(X_k^*)$ in the square $\overline{0}$ one has for v, w in F_2 by definition:

$$w \in U_k \Leftrightarrow \overline{0} \cdot w = \overline{0}$$
 and $vwv^{-1} \in U_k \Leftrightarrow \overline{b} \cdot w = \overline{b}$ with $\overline{b} := \overline{0} \cdot v$ (1)

Let \bar{a} be in $\mathbb{Z}/2k\mathbb{Z}$, then x, y, x^{-1}, y^{-1} act on \bar{a} in the following way:

$$\bar{a} \cdot x = \overline{a+1} \qquad \bar{a} \cdot x^{-1} = \overline{a-1}$$

$$\bar{a} \cdot y = \begin{cases} \frac{\overline{a+1}}{\overline{a-1}}, & \text{if } \bar{a} \text{ even} \\ \text{if } \bar{a} \text{ odd} \end{cases} \qquad \bar{a} \cdot y^{-1} = \begin{cases} \frac{\overline{a+1}}{\overline{a-1}}, & \text{if } \bar{a} \text{ even} \\ \frac{\overline{a-1}}{\overline{a-1}}, & \text{if } \bar{a} \text{ odd} \end{cases}$$

$$(2)$$

Here we use that x^{2k} is in U_k .

Now, we obtain the action of any w in F_2 on $\mathbb{Z}/k\mathbb{Z}$: Each $x^{\pm 1}$ contributes ± 1 , each $y^{\pm 1}$ contributes 1 or -1 depending on the parity of the position of $y^{\pm 1}$ in w.

Definition 7. For $w \in F_2$ let $\sharp_{|y|}(w| \text{ odd})$ be the total number of occurrences of y and y^{-1} in w at an odd position $(y^{-1} \text{ counted positive!})$. Similarly, denote by $\sharp_{|y|}(w| \text{ even})$ the number of occurrences of y and y^{-1} in w at an even position. Furthermore define

$$\Delta_y(w) := \sharp_{|y|}(w| \ odd) - \sharp_{|y|}(w| \ even).$$

E.g. for $w := xyxy^{-1}x^2y^{-1}$ one has $\sharp_{|y|}(w| \text{ odd}) = 1$, $\sharp_{|y|}(w| \text{ even}) = 2$ and $\Delta_y(w) = -1$.

Using (2) we obtain

$$\bar{a} \cdot w = \begin{cases} \frac{\overline{a + \sharp_x(w) + \Delta_y(w)}}{\overline{a + \sharp_x(w) - \Delta_y(w)}}, & \text{if } \bar{a} \text{ even} \\ \frac{\overline{a + \sharp_x(w) - \Delta_y(w)}}{\overline{a + \sharp_x(w) - \Delta_y(w)}}, & \text{if } \bar{a} \text{ odd} \end{cases}$$
(3)

Since $U_k = \{ w \in F_2 | \bar{0} \cdot w = \bar{0} \}$, 2. follows from (3).

<u>3.:</u>

Before restricting to $\Gamma(2)$ we stay in the general setting and observe that it is sufficient to consider the two generators xy and y^2 . More precisely: For $\gamma \in \operatorname{Aut}^+(F_2)$

$$\gamma \in \operatorname{Stab}(U_k) \Leftrightarrow \gamma \in \operatorname{Stab}(U_1) \text{ and } \gamma(y^2), \gamma(xy) \in U_k$$

$$\tag{4}$$

 \Rightarrow follows by 1. and the definition of $\operatorname{Stab}(U_k)$.

 \Leftarrow is true since U_k is the subgroup of U_1 consisting of those words in the three generators $w_1 := x^2$, $w_2 := xy$ and $w_3 := y^2$ of U_1 for which the number of occurrences of w_1 is divisible by $k (w_1^{-1} \text{ counted negative})$, i.e.

$$U_k = \{ w = w(w_1, w_2, w_3) \in U_1 | \sharp_{w_1}(w) \text{ is divisible by } k \}.$$

 U_k is generated as normal subgroup of U_1 by w_1^k , w_2 and w_3 . Thus it is sufficient to check x^{2k} , xy and y^2 in order to find out, if a given $\gamma \in \text{Stab}(U_1)$ fixes U_k . But $\gamma(x^{2k}) = \gamma(w_1)^k$ and the number of occurrences of each generator in it is divisible by k. Hence it follows (4).

As next step observe that in order to check whether A is in $\Gamma(O_k)$ it is sufficient to consider one preimage of A under $\hat{\beta}$: Let A be in $\operatorname{SL}_2(\mathbb{Z})$ and $\gamma_0 \in \operatorname{Aut}^+(F_2)$ such that $\hat{\beta}(\gamma_0) = A$. Since $\hat{\beta}$ is the quotient map $\operatorname{Aut}^+(F_2) \to \operatorname{Out}^+(F_2) \cong$ $\operatorname{SL}_2(\mathbb{Z})$, an automorphism γ is mapped to A by $\hat{\beta}$ iff it is conjugated to γ_0 . Thus we have :

$$A \in \Gamma(O_k) \quad \stackrel{\text{thm.2}}{\Leftrightarrow} \quad \exists \gamma \in \operatorname{Stab}(U_k) : \hat{\beta}(\gamma) = A \Leftrightarrow \exists w \in F_2 : w\gamma_0 w^{-1} \in \operatorname{Stab}(U_k)$$
$$\stackrel{(1)}{\Leftrightarrow} \quad \exists \bar{b} \in \mathbb{Z}/(2k\mathbb{Z}) : \bar{b} \cdot \gamma_0(u) = \bar{b} \text{ for all } u \in U_k. \tag{5}$$

Observe that Norm $(U_k) = U_1$ (by checking that it contains the three generators of U_1). Thus Norm (U_k) has index 2 in F_2 and 1, x are coset representatives. Thus in (5) it is sufficient to consider $\bar{b} \in \{\bar{0}, \bar{1}\}$. Together with (4) it follows that

$$A \in \Gamma(O_k) \Leftrightarrow \qquad (\bar{0} \cdot \gamma_0(y^2) = \bar{0} \text{ and } \bar{0} \cdot \gamma_0(xy) = \bar{0}) \text{ or} (\bar{1} \cdot \gamma_0(y^2) = \bar{1} \text{ and } \bar{1} \cdot \gamma_0(xy) = \bar{1}).$$
(6)

Now, suppose

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(2) = \langle A_1 := \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, A_2 := \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, A_3 := \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \rangle .$$
(7)

We define the three automorphisms

$$\gamma_1: x \mapsto x, y \mapsto x^2 y \qquad \gamma_2: x \mapsto xy^2, y \mapsto y \qquad \gamma_{-I}: x \mapsto x^{-1}, y \mapsto y^{-1}$$

and set

$$G(2) := <\gamma_1, \gamma_2, \gamma_{-I} > .$$

Thus $\hat{\beta}(G(2)) = \Gamma(2)$. Let γ_0 be in G(2) with $\hat{\beta}(\gamma_0) = A$. We will use in the following the fact proven below in lemma 8 that G(2) respects Δ_y , i.e.:

$$\forall \gamma \in G(2), w \in F_2 : \Delta_y(\gamma(w)) = \Delta_y(w)$$

Then we have:

$$\bar{0} \cdot \gamma(xy) \stackrel{(3)}{=} \overline{0 + \sharp_x(\gamma(xy)) + \Delta_y(\gamma(xy))} \stackrel{\text{lem.s}}{=} \overline{\sharp_x(\gamma(x)) + \sharp_x(\gamma(y)) + \Delta_y(xy)} = \overline{a + b - 1}.$$

Similarly one obtains

$$\begin{split} \bar{1} \cdot \gamma(xy) &= \bar{1} + \overline{a+b+1} \\ \bar{0} \cdot \gamma(y^2) &= \overline{2b} \quad \text{and} \quad \bar{1} \cdot \gamma(y^2) = \bar{1} + \overline{2b} \end{split}$$

Thus by (6) $A \in \Gamma(O_k)$ iff $2b \equiv 0$ and $a + b \equiv \pm 1$ modulo 2k. This proves 3.

<u>4.:</u>

Recall that by 1. the Veech group $\Gamma(O_k)$ is a subgroup of $\Gamma(O_1)$. Suppose that $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is in $\Gamma(O_1) \setminus \Gamma(2)$. The index of $\Gamma(2)$ in $\Gamma(O_1)$ is 2, since by 1. any element of $\Gamma(O_1)$ maps to either $\overline{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ or $\overline{S} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ in $\operatorname{SL}_2(\mathbb{Z})/\Gamma(2) = \operatorname{SL}_2(\mathbb{Z}/2\mathbb{Z})$. Therefore A has a decomposition $A = B \cdot S$ for some matrix B in $\Gamma(2)$. We define the automorphism

$$\gamma_s: x \mapsto y, y \mapsto x^{-1}$$

then γ_s is a preimage of S under $\hat{\beta}$. Furthermore, we take a preimage γ_B of B in G(2), then $\gamma_A := \gamma_B \circ \gamma_S$ is a preimage of A. One obtains:

$$\bar{0} \cdot \gamma_A(xy) \stackrel{(3)}{=} \overline{0 + \sharp_x(\gamma_A(xy)) + \Delta_y(\gamma_B(yx^{-1}))} \stackrel{Lems}{=} \overline{a+b+1}$$

Similarly, one calculates $\overline{0} \cdot \gamma_A(y^2)$, $\overline{1} \cdot \gamma_A(xy)$ and $\overline{1} \cdot \gamma_A(y^2)$ and obtains altogether:

$$\overline{0} \cdot \gamma_A(xy) = \overline{a+b+1} \qquad \overline{0} \cdot \gamma_A(y^2) = \overline{2b}$$

$$\overline{1} \cdot \gamma_A(xy) = \overline{1} + \overline{a+b-1} \qquad \overline{1} \cdot \gamma_A(y^2) = \overline{1} + \overline{2b}$$

Thus it follows that $A \in \Gamma(O_k)$ iff $2b \equiv 0 \mod 2k$ and $a + b \equiv \mp 1 \mod 2k$. Together with 1. and 3. this finishes the proof of 4. In order to obtain that $\Gamma(O_k)$ and $\pm\Gamma_1(2k)$ have the same index in $\mathrm{SL}_2(\mathbb{Z})$, we use the fact that $\Gamma(2k)$ is contained in $\Gamma(O_k)$ as well as in $\pm\Gamma_1(2k)$. Therefore it is sufficient to show that their images in $\mathrm{SL}_2(\mathbb{Z}/2k\mathbb{Z}) \cong \mathrm{SL}_2(\mathbb{Z})/\Gamma(2k)$ have the same number of elements.

Using 4. we obtain that the image of $\Gamma(O_k)$ in $SL_2(\mathbb{Z})$ is:

$$\begin{cases} \begin{pmatrix} \pm 1 & 0 \\ e & \pm 1 \end{pmatrix}, \begin{pmatrix} \pm 1+k & k \\ o & \pm 1+k \end{pmatrix} | e, o \in \mathbb{Z}/2k\mathbb{Z}, e \text{ even }, o \text{ odd } \}, \text{ if } k \text{ odd } (8) \\ \begin{cases} \begin{pmatrix} \pm 1 & 0 \\ e & \pm 1 \end{pmatrix}, \begin{pmatrix} \pm 1+k & k \\ e' & \pm 1+k \end{pmatrix} | e, e' \in \mathbb{Z}/2k\mathbb{Z}, e, e' \text{ even } \}, \text{ if } k \text{ even } (9) \end{cases}$$

Thus the image has in both cases 4k elements. The image of $\pm \Gamma_1(2k)$ consists of 4k elements as well.

Observe by (9) that $\Gamma(O_k)$ is contained in $\pm \Gamma(2)$ if k is even. But $\Gamma(2)$ is normal and does not contain $\pm \Gamma_1(2k)$. Therefore $\Gamma(O_2)$ is not conjugated to $\pm \Gamma_1(2k)$ if k is even.

For k odd, one can check by a calculation in $SL_2(\mathbb{Z}/2k\mathbb{Z})$ that

$$\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \Gamma_1(2k) \begin{pmatrix} 1 & -k \\ 0 & 1 \end{pmatrix} = \Gamma(O_k).$$
(10)

Lemma 8. The number $\Delta_y(w) = \sharp_{|y|}(w| \text{ odd}) - \sharp_{|y|}(w| \text{ even})$ is invariant under $G(2) = \langle \gamma_1, \gamma_2, \gamma_{-I} \rangle$, i.e. if γ is in G(2), then

$$\forall w \in F_2 : \Delta_y(\gamma(w)) = \Delta_y(w).$$

Proof. It is sufficient to check the claim for the generators of G(2):

$$\gamma_1: x \mapsto x, y \mapsto x^2 y, \quad \gamma_2: x \mapsto xy^2, y \mapsto y \quad \text{and } \gamma_{-I}: x \mapsto x^{-1}, y \mapsto y^{-1}$$

Consider $\gamma := \gamma_1$: Let w be an arbitrary element in F_2 , thus w is a reduced word in the four letters x, y, x^{-1}, y^{-1} : $w = w(x, y, x^{-1}, y^{-1})$ and $\gamma(w) = w(x, x^2y, x^{-1}, y^{-1}x^{-2})$.

Observe that for the words of replacement $x, x^2y, x^{-1}, y^{-1}x^{-2}$ the value of Δ_y is the same as for the original words x, y, x^{-1} and y^{-1} , their length is odd and that reduction also does not change the value of Δ_y . Hence $\Delta_y(\gamma_1(w)) = \Delta_y(w)$. With the same arguments this is true for γ_2 and γ_{-I} . Thus the claim holds. \Box

Using this sequence of origamis one can construct origamis having Veech group $\pm\Gamma_1(2k)$ (for k odd). In the following corollary, we use the automorphism $\gamma: x \mapsto x, y \mapsto x^{-k}y$.

Corollary 9. Let k be odd. Define $V_k := \gamma(U_k)$ with the group U_k defined in proposition 6. Call P_k the origami that is defined by the finite index subgroup V_k of F_2 . Then $\Gamma(P_k) = \pm \Gamma_1(2k)$.

5.:

Proof. By remark 3 we have $\operatorname{Stab}(V_k) = \gamma \circ \operatorname{Stab}(U_k) \circ \gamma^{-1}$. By theorem 2 it follows that

$$\Gamma(P_k) = \hat{\beta}(\gamma)\Gamma(O_k)\hat{\beta}(\gamma^{-1}) = \begin{pmatrix} 1 & -k \\ 0 & 1 \end{pmatrix}\Gamma(O_k)\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \stackrel{(10)}{=} \pm\Gamma_1(2k)$$

5 Stair-origamis

In this section we consider two infinite sequences G_k and St_k of origamis of genus k. We show for both that all origamis in the sequence have the same Veech group. Because of their shape (see figures 2 and 3) they are called *stair origamis*.

The smallest example of the two sequences, the stairs with 3 and 4 squares, appear e.g. in [M], where the equations for the Teichmüller curves defined by these two origamis are calculated. The stair with three squares is because of its shape also called *L*-origami and is generalized in another sequence with origamis all in genus 2 (see e.g [HL], [S]).

The stairs with an odd number of squares occur in [H], where they are used to construct origamis that cover it having Veech group $SL_2(\mathbb{Z})$.

Definition 10. Let G_k be the origami with 2k squares $(k \ge 2)$ in figure 2 given by the permutations

$$\sigma_a := (1 \ 2) \ \dots \ (2k-1 \ 2k) \ and \ \sigma_b := (2 \ 3) \ \dots \ (2k-2 \ 2k-1) \in S_{2k}$$

Figure 2

Here opposite edges are identified. One obtains a closed surface with the two marked points \bullet and \bigstar . Its genus is k. The fundamental group is

$$U_k = \langle y, (xy)^{k-1}xyx^{-1}(xy)^{-(k-1)}, (xy)^j x^2 (xy)^{-j}, (xy)^i xy^2 x^{-1} (xy)^{-i} | j \in \{0, \dots, k-1\}, i \in \{0, \dots, k-2\} \rangle$$

Proposition 11. The Veech group $\Gamma(G_k)$ is for all $k \in \mathbb{N}$ the principal congruence group $\Gamma(2)$.

Proof. The proof is divided into two parts: In the first part we show $\Gamma(2)$ is a subgroup of $\Gamma(G_k)$; in the second part we show that it is not bigger.

 $\Gamma(G_k)$ is a subgroup of $\Gamma(2)$:

Recall that the group $\Gamma(2)$ is generated by the three matrices A_1 , A_2 , A_3 given in (7). Take again the three preimages under $\hat{\beta}$:

$$\gamma_1: \left\{ \begin{array}{ccc} x & \mapsto & x \\ y & \mapsto & x^2 y \end{array} \right., \ \gamma_2: \left\{ \begin{array}{ccc} x & \mapsto & xy^2 \\ y & \mapsto & y \end{array} \right. \text{ and } \gamma_3: \left\{ \begin{array}{ccc} x & \mapsto & x^{-1} \\ y & \mapsto & y^{-1} \end{array} \right.$$

We show that $\gamma_i(U_k) = U_k$.

Observe that U_k contains $N := \langle x^2, y^2 \rangle_{F_2}$. More precisely, U_k is generated by N and the two elements y and cyc^{-1} with $c := (xy)^{k-1}x$. Observe furthermore, that $\gamma_i(N) = N$ for i = 1, 2, 3: E.g. $\gamma_1(x^2) = x^2 \in N$ and $\gamma_1(y^2) = x^2yx^2y = y((y^{-1}x^2y)x^2y^2)y^{-1} \in N$. This

works similarly for i = 2 and i = 3. Thus we have $\gamma(N) = N$ for all $\gamma \in G(2)$.

Since $N \leq F_2$ and $N \subseteq U_k$, it follows that

$$\forall n \in N, w, v \in F_2: wnv = uwv \text{ with some } u \in U_k.$$
(11)

One obtains e.g.: $\gamma_1(y) = x^2 y \in U_k$ and

 $\begin{aligned} &\gamma_1(cyc^{-1}) = (\gamma_1(xy))^{k-1}xx^2yx^{-1}(\gamma_1(xy))^{-(k-1)} = (x^3y)^{k-1}xx^2yx^{-1}(x^3y)^{-(k-1)} \stackrel{(11)}{=} \\ &u(xy)^{k-1}xyx^{-1}(xy)^{-(k-1)} = ucyc^{-1} \text{ for some } u \in U. \text{ Thus } \gamma_1(U_k) = U_k. \end{aligned}$ This works similarly for i = 2, i = 3, which finishes the proof that $\Gamma(2) \subseteq \Gamma(G_k). \end{aligned}$

 $\Gamma(2)$ is the whole group $\Gamma(G_k)$:

The matrices

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, B_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, B_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, B_3 = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}, B_4 = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}, B_5 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

form a system of coset representatives of $\Gamma(2)$ in $SL_2(\mathbb{Z})$. Thus it remains to show, that B_1 , B_2 , B_3 , B_4 and B_5 are not in $\Gamma(G_k)$.

Observe that all generators and thus all elements of U_k contain an even number of occurrences of x. Since y is in U_k , the number $\sharp_x(\gamma(y))$ has to be even for an automorphism γ in $\operatorname{Stab}(U_k)$. This implies that the top right entry of an element of $\Gamma(G_k)$ has to be even. From this argument it follows that B_1 , B_2 , B_3 and B_4 are not in $\Gamma(G_k)$.

It remains to check B_5 . We take the preimage $\gamma_0 : x \mapsto xy, y \mapsto y$ in $\operatorname{Aut}^+(F_2)$ of B_5 under $\hat{\beta}$.

Then we have for each other preimage $\gamma := w \cdot \gamma_0 \cdot w^{-1}$ $(w \in F_2)$:

 $\begin{array}{l} \gamma(xy^{-1}xy^{-1}) = w\gamma_0(xy^{-1}xy^{-1})w^{-1} = wx^2w^{-1} \in N \subseteq U_k.\\ \text{But } xy^{-1}xy^{-1} \text{ is not in } U_k, \text{ thus } \gamma \notin \operatorname{Stab}(U_k). \text{ From this it follows that } B_5 \notin \Gamma(G_k). \end{array}$

Definition 12. Let St_k be the origami with 2k - 1 ($k \ge 2$) squares in figure 3 given by the permutations

 $\sigma_a := (1 \ 2) \ \dots \ (2k - 3 \ 2k - 2) \ and \ \sigma_b := (2 \ 3) \ \dots \ (2k - 2 \ 2k - 1) \in S_{2k-1}$

Figure 3

Again opposite edges are identified. One obtains a closed surface with one marked point: \bullet . Its genus is k. The fundamental group is

$$U_k = \langle y, (xy)^{k-1} x(xy)^{-(k-1)}, (xy)^j x^2 (xy)^{-j}, (xy)^j xy^2 x^{-1} (xy)^{-j} | j \in \{0, \dots, k-2\} \rangle$$

Proposition 13. The Veech group $\Gamma(St_k)$ is for all $k \in \mathbb{N}$ the congruence group

$$\Gamma := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) | a + c \text{ and } b + d \text{ odd } \right\}.$$

Proof. We have

$$A \in \Gamma \Leftrightarrow A$$
 is sent to the image of $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ or $B_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

in $\operatorname{SL}_2(\mathbb{Z})/\Gamma(2) = \operatorname{SL}_2(\mathbb{Z}/2\mathbb{Z})$ under the natural projection. Thus Γ is generated as normal subgroup of $\operatorname{SL}_2(\mathbb{Z})$ by $\Gamma(2)$ and the matrix B_2 .

Take the automorphisms γ_1 , γ_2 and γ_3 defined as in the proof of proposition 11 and take the automorphism $\gamma_4 : x \mapsto y, y \mapsto x^{-1}$ as preimage of B_2 under $\hat{\beta}$.

Observe that U_k again contains $N = \langle x^2, y^2 \rangle \rangle_{F_2}$ and is generated by N and the two elements y and cxc^{-1} with $c := (xy)^{k-1}$.

We have already seen in the last proof that $\gamma_i(N) = N$ for $i \in \{1, 2, 3\}$ and it is easily seen that $\gamma_4(N) = N$. Furthermore, one can check similarly as in the last proof that $\gamma_i(y)$ and $\gamma_i(cyc^{-1})$ is in U_k . Hence Γ is contained in the Veech group of St_k . Finally we show that $B_1 \notin \Gamma(St_k)$: Take one fixed preimage of B_1 under β : $\gamma_5 : x \mapsto x, y \mapsto xy$. Then for each conjugated automorphism $\gamma := w\gamma_5 w^{-1}$ $(w \in F_2)$ one has $\gamma(x^{-1}yx^{-1}y) = wy^2 w^{-1} \in St_k$, but $x^{-1}yx^{-1}y \notin St_k$. Thus $\Gamma(St_k) \neq SL_2(\mathbb{Z})$. It contains Γ which has index 3. Thus it is equal to Γ . \Box

Since $\mathbb{H}/\Gamma(2) \cong \mathbb{P}^1 \setminus \{0, 1, \infty\}$ and $\mathbb{H}/\Gamma \cong \mathbb{P}^1 \setminus \{0, 1\}$ – where Γ is from proposition 13 and the two groups act as fuchsian groups on \mathbb{H} – we obtain the following result:

Corollary 14. For each $g \ge 2$, there is an origami O of genus g such that $\mathbb{H}/\Gamma(O)$ is the affine line without three points and for each $g \ge 2$ there is an origami O such that $\mathbb{H}/\Gamma(O)$ is the affine line without 2 marked points.

As mentioned in section 2 this implies in particular that the Teichmüller curve defined by these origamis is birationally to the projective line without three points for the stair-origamis G_k , respectively to the projective line without two points for St_k .

References

- [EG] C.J. Earle, F.P. Gardiner: *Teichmüller disks and Veech's F-structures*. American Mathematical Society. Contemporary Mathematics 201, 1997 (p. 165-189).
- [GJ] E. Gutkin, C. Judge: Affine mappings of translation surfaces: Geometry and arithmetic. Duke Mathematical Journal 103 No. 2, 2000 (p. 191-213).
- [H] F. Herrlich: Characteristic Origamis. Preprint, Karlsruhe 2005.
- [HL] P. Hubert, S. Lelièvre: Noncongruence subgroups in H(2). Preprint, 2004.
- [L] P. Lochak: On arithmetic curves in the moduli space of curves. To appear in Journal of the Institut of Math. of Jussieu.
- [McM] C. McMullen: Billiards and Teichmüller curves on Hilbert modular surfaces. Journal of the American Mathematical Society 16 No. 4, 2003 (p. 857-885).
- [M] M. Möller: Teichmüller curves, Galois action and GT-relations. Preprint, 2003. arXiv:math.AG/0311308.
- [S] G. Schmithüsen: An algorithm for finding the Veech group of an origami. Experimental Mathematics 13 (2005).
- [V] W.A. Veech: Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards. Inventiones Mathematicae 97 No.3, 1989 (p. 553-583).