Home | english | Impressum | Sitemap | Intranet | KIT
Arbeitsgruppe Differentialgeometrie

Kollegiengebäude Mathematik (20.30)
Zimmer 1.003
Ute Peters

Institut für Algebra und Geometrie
Englerstr. 2
76131 Karlsruhe

Mo-Fr 09:00-15:00
Für Studierende:
Mo-Fr 09:15-11:15

Tel.: 0721 608 43943

Fax.: 0721 608 46909

Comparison Geometry (Wintersemester 2014/15)

Dozent: Dr. Marco Radeschi
Veranstaltungen: Vorlesung (0111400), Übung (0111500)
Semesterwochenstunden: 2+1

Vorlesung: Donnerstag 11:30-13:00 1C-01
Übung: Dienstag 8:00-9:30 1C-03
Dozent Dr. Marco Radeschi
Zimmer 4A-19 Allianz-Gebäude (05.20)
Email: marco.radeschi@kit.edu
Übungsleiterin Masoumeh Zarei
Zimmer 4A-19 Allianz-Gebäude (05.20)
Email: masoumeh.zarei@kit.edu

The course provides a thorough introduction to comparison theory in Riemannian geometry:

What can be said about a complete Riemannian manifold when (mainly lower) bounds for the sectional or Ricci curvature are given? Starting from the comparison theory for the Riccati ODE which describes the evolution of the principal curvatures of equidistant hypersurfaces, we discuss the global estimates for volume and length given by Bishop-Gromov and Toponogov. An application is Gromov’s estimate of the number of generators of the fundamental group and the Betti numbers when lower curvature bounds are given. Using convexity arguments, we prove the ”soul theorem” of Cheeger and Gromoll and the sphere theorem of Berger and Klingenberg for nonnegative curvature. If lower Ricci curvature bounds are given we exploit subharmonicity instead of convexity and show the rigidity theorems of Myers-Cheng and the splitting theorem of Cheeger and Gromoll. The Bishop-Gromov inequality shows polynomial growth of finitely generated subgroups of the fundamental group of a space with nonnegative Ricci curvature (Milnor). We also discuss briefly Bochner’s method.

Exercise classes are held on Mondays, 13h00-14h00, in 1C-02


Homework 1
Homework 2
Homework 3
Homework 4
Homework 5
Homework 5.2
Homework 6
Homework 7
Homework 8
Homework 9
Homework 10
Homework 11


J.-H. Eschenburg, "Comparison theorems in Riemannian Geometry" (figures here)