HOMEWORK 2

- (1) Let $M = \mathbb{R}^n$, let $V = \nabla \operatorname{dist}(0, .)$ denote the gradient of the distance function from the origin, and let $\gamma(t) = t \frac{\partial}{\partial x_n}$. (a) Prove that $V = \sum_{i=1}^n \frac{x_i}{r} \frac{\partial}{\partial x_i}$, where $r^2 = \sum_{i=1}^n x_i^2$.

 - (b) If $A(t) = \nabla V|_{\gamma(t)}$, prove that with respect to the basis $\{\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_{n-1}}\}$, $A(t) = \frac{1}{t}I$.
- (2) Let M_{κ} be a space of constant curvature κ , let $\gamma: \mathbb{R} \to M_{\kappa}$ be a geodesic, and let A(t) be a solution of the Riccati equation $A' + A^2 +$ R=0.
 - (a) Suppose that A(t) = a(t)I, that is, the equidistant hypersurfaces defining A(t) are umbilical along γ . Prove that:
 - (i) The function a(t) solves the equation $a' + a^2 + \kappa = 0$.
 - (ii) If $\kappa = 1$ then $a(t) = \cot(t t_0)$ for some t_0 .
 - (iii) If $\kappa = 0$ then $a(t) = \frac{1}{t-t_0}$ for some t_0 or a(t) = 0.
 - (iv) If $\kappa = -1$ then $a(t) = \coth(t t_0)$ or $a(t) = \tanh(t t_0)$ for some t_0 , or $a(t) = \pm 1$.
 - (b) Prove that for a generic A(t), there exists a basis $E_1(t), \ldots E_{n-1}(t)$ of parallel vector fields with respect to which A(t) can be written as

$$A(t) = \operatorname{diag}(a_1(t), \dots a_{n-1}(t))$$

where each $a_i(t)$ is a solution of $a_i'(t) + a_i^2 + \kappa = 0$.

- (3) Let M^n be a Riemannian manifold, $p \in M$, and let $V = \nabla \operatorname{dist}(p, .)$. Let $\exp_p: B_r(0) \subseteq T_pM \to B_r(p) \subseteq M$ be the exponential map around p. We want to show that $A(t) = \nabla V|_{\gamma(t)}$ satisfies $A \sim \frac{1}{t}I$ around t = 0.
 - (a) Let $e_1, \ldots e_n \in T_pM$ be an orthonormal basis of T_pM and let $x_1, \ldots x_n$ be the coordinate functions on T_pM defined by

$$x_i(v) = g_p(e_i, v).$$

Prove that the vector fields $X_1, \ldots X_n$ in $B_r(p)$ defined by $X_i =$ $(\exp_p)_* \frac{\partial}{\partial x_i}$ satisfy $\nabla_{X_i} X_j(p) = 0$.

- (b) Let $\operatorname{dist}(0,.) = \exp^{-1}(\operatorname{dist}(p,.))$. Prove that for any $v \in B_r(0)$, $\operatorname{dist}(0,v) = ||v||$, and therefore $(\exp_p)_*^{-1}(V) = \nabla \operatorname{dist}(0,.) =$
- (c) Choose e_1, \ldots, e_n of T_pM in such a way that $\gamma'(0) = e_n$. Show that $(\exp_p)^{-1}\gamma(t) = t\frac{\partial}{\partial x_n}$.

(d) By letting g' denote the pullback metric on $B_r(0)$, the exponential map becomes an isometry and we can compute $A(t) = \nabla V|_{\gamma(t)}$ directly on T_pM . Show that $A(t) = \frac{1}{t}I + B$, where B depends linearly on the Christoffel symbols $\Gamma_{ij}^k = g'\left(\nabla_{\frac{\partial}{\partial x_i}}\frac{\partial}{\partial x_j}, \frac{\partial}{\partial x_k}\right)$ and in particular $B(t) \sim 0$ around t = 0.