Home | english | Impressum | Sitemap | Intranet | KIT
Arbeitsgruppe Differentialgeometrie

Sekretariat
Allianz-Gebäude (05.20)
Zimmer 4A-16
Ute Peters

Adresse
Institut für Algebra und Geometrie
Kaiserstr. 89-93
D-76133 Karlsruhe

Öffnungszeiten:
Mo-Fr 09:00-15:00
Für Studierende:
Mo-Fr 09:15-11:15

Tel.: 0721 608 43943

Fax.: 0721 608 46909

Elementare Topologie (Sommersemester 2012)

Dozent: Dr. Sebastian Grensing
Veranstaltungen: Proseminar (0170800)
Semesterwochenstunden: 2


Termine
Proseminar: Donnerstag 14:00-15:30 HS 59 Geb. 10.81
Dozenten
Seminarleitung Dr. Sebastian Grensing
Sprechstunde: n. V.
Zimmer 4A-20 Allianz-Gebäude (05.20)
Email: grensing@kit.edu
Seminarleitung Dipl.-Math. Sandra Lenz
Sprechstunde: nach Vereinbarung
Zimmer 4A-19 Allianz-Gebäude (05.20)
Email: sandra.lenz@kit.edu

Kleinsche Flasche

"Unfortunately, the Klein bottle does not bound a volume - in other words, it has no interior. This means you could put twice as much sugar on a ‘Klein bottle’ doughnut as on a torus doughnut, but it would have no dough inside!"
K. POLTHIER

Sowohl Geometrie als auch Topologie befassen sich mir der Form (mathematischer) Dinge. Während die Geometrie durch Messen und Wägen Eigenschaften wie etwa Distanz, Winkel oder Volumen herleitet und untersucht, entsteht für die Topologie die Vergleichbarkeit von Dingen durch Dehnen, Stauchen und überhaupt alle Verformungen, welche in einem geeigneten Sinne die Dinge nicht zerreißen: Die Topologie untersucht jene Eigenschaften, welche invariant unter stetigen Verformungen, sogenannten Homöomorphismen, sind. In diesem Sinne sind beispielsweise ein Dreieck, ein Quadrat und ein Kreis in der Ebene topologisch äquivalente Objekte.

Das Proseminar richtet sich an Studentinnen und Studenten ab dem zweiten Semester; es behandelt einführende Themen der Topologie, die einen sehr intuitiven, visuellen Zugang zulassen. Ziel der Vorträge ist es unter anderem, den Zuhörern einerseits diese Intuition zu vermitteln und sie andererseits in präzise mathematische Sprache zu fassen. Grundlage des Proseminares ist das Buch A Topological Aperitif, Springer 2009, von S. Huggett und D. Jordan, welches über die KIT-Bibliothek auch online verfügbar ist.