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Exercise 56: Compute the following limits:

(a) lim
x→0

(
1

x3 + ax2 + x
− 1

sinx

)
, (b) lim

x→0

(
1

x

)tan x

, (c) lim
x→0

(cosx)1/x
2

.

The coefficient a ∈ R in part (a) is a constant.

Solution:

We will apply l’Hospital’s rule to evaluate these limits.

(a) We have
1

x3 + ax2 + x
− 1

sinx
=

sinx− (x3 + ax2 + x)

(x3 + ax2 + x) sinx
.

By l’Hospital’s rule we have

lim
x→0

(
1

x3 + ax2 + x
− 1

sinx

)
= lim
x→0

cosx− 3x2 − 2ax− 1

(x3 + ax2 + x) cosx+ (3x2 + 2ax+ 1) sinx
.

Applying l’Hospital a second time we get

lim
x→0

(
1

x3 + ax2 + x
− 1

sinx

)
= lim
x→0

− sinx− 6x− 2a

(6x2 + 4ax+ 2) cosx− (x3 + ax2 − 5x− 2a) sinx

=
−2a

2
= −a.

(b) Rewriting yields (
1

x

)tan x

= etan x ln 1
x = e− tan x ln x = exp

(
− tanx

1
ln x

)
.

We may bring the limit inside the exponential function by continuity, and the function inside has the 0/0 form
required to apply l’Hospital’s rule.

lim
x→0

tanx
1

ln x

= lim
x→0

1
cos2 x

− 1
x(ln x)2

= lim
x→0
−
(√

x lnx

cosx

)2

Evaluating the resulting limit inside the exponential we obtain

lim
x→0

(√
x lnx

)
= lim
x→0

lnx
1√
x

−∞
∞= lim

x→0

1
x

− 1
2x3/2

= lim
x→0
−2
√
x = 0.

Thus, the original limit becomes

lim
x→0

(
1

x

)tan x

= exp

(
lim
x→0

(√
x lnx

cosx

)2
)

= exp

((
0

1

)2
)

= 1.

(c) We will again rewrite the expression using the exponential function and apply l’Hospital’s rule:

lim
x→0

(cosx)1/x
2

= lim
x→0

exp

(
ln cosx

x2

)
= exp

(
lim
x→0

ln cosx

x2

)
0
0= exp

(
lim
x→0

1
cos x (− sinx)

2x

)
= exp

(
− lim
x→0

sinx

2x cosx

)
0
0= exp

(
− lim
x→0

cosx

2 cosx− 2x sinx

)
= e−1/2.

Exercise 57:

Determine the constant c ∈ R such that the function f(x) =

{
c, x = 1,

2ln x−x
ln x , x 6= 1,

on R>0 is continuous.



Solution:

For continuity to hold we must have,

c = f(1)
!
= lim
x→1

f(x) = lim
x→1

2ln x − x
lnx

.

Rewriting this expression with the exponential function we obtain:

2ln x − x
lnx

=
eln 2 ln x − x

lnx
=
xln 2 − x

lnx
.

We have an expression with the 0/0 form and apply l’Hospital’s rule:

lim
x→1

xln 2 − x
lnx

= lim
x→1

ln 2xln 2−1 − 1
1
x

= ln 2− 1.

Thus we need c = ln 2− 1 for f defined on R>0 to be continuous.

Exercise 58: Calculate all the derivatives f (n), n = 0, 1, 2, . . . of the function f and give the Taylor series for
f with center of expansion x0 = 0. Where does the series in part (a) converge?

(a) f(x) = cosh
x

2
, x ∈ R, (b) f(x) =

√
1 + x, |x| ≤ 1.

Hint for (b): The derivatives of f have the following form: f (k)(x) = −(−1)k (2k−2)!
22k−1 (k−1)! (1 + x)−

2k−1
2 .

Solution:

(a) By considering the values k = 1, 2, 3 we guess the following form for f (k):

f (k)(x) =

{
1
2k

sinh
(
x
2

)
, k ungerade

1
2k

cosh
(
x
2

)
, k gerade

We prove the above form is correct by induction.

• k = 1: f ′(x) = 1
2 sinh(x2 ) X

• k = 2: f ′′(x) = 1
4 cosh(x2 ) X

• k → k + 1: 1. For k odd: f (k+1)(x) =
(

1
2k

sinh(x2 )
)′

= 1
2k+1 cosh(x2 )

2.For k even f (k+1)(x) =
(

1
2k

cosh(x2 )
)′

= 1
2k+1 sinh(x2 ) �

We now find the Taylor expansion. Observe sinh(0) = 0 and cosh(0) = 1, so we have f (2k+1)(x) = 0 and
f (2k)(x) = 1

22k
. We obtain the series:

f(x) =

∞∑
k=0

f (2k)(0)

(2k)!
(x− 0)2k =

∞∑
k=0

x2k

22k(2k)!
.

We analyze convergence with the ratio test. Set ak = x2k

22k(2k)!
, then∣∣∣∣ak+1

ak

∣∣∣∣ =
22k(2k)!|x|2k+2

22k+2(2k + 2)!|x|2k
=

|x|2

4(2k + 2)(2k + 1)
→ 0 , (k →∞)

Thus, the series converges on R.

(b)

(i) We will prove the formula for the kth derivative by induction:

• k = 1: We have f(x) = (x+ 1)1/2 so f ′(x) = 1
2 (x+ 1)−1/2. It follows that

f (1)(x) = −(−1)1
(2− 2)!

22−1 0!
(1 + x)−

2−1
2 =

1

2
(1 + x)−1/2 = f ′(x)

• k → k + 1: We assume the result holds for k and prove it for k + 1. We have

Induction Hypothesis f (k)(x) = −(−1)k
(2k − 2)!

22k−1 (k − 1)!
(1 + x)−

2k−1
2

Induction Step
(
f (k)

)′
(x) = f (k+1)(x) = (−1)k

(2k)!

22k+1 k!
(1 + x)−

2k+1
2



Thus we obtain for f (k):(
f (k)

)′
(x) = −(−1)k

(2k − 2)!

22k−1 (k − 1)!

(
−2k − 1

2

)
(1 + x)−

2k+1
2

= (−1)k
(2k − 2)!(2k − 1)

22k−1(k − 1)! · 2
(1 + x)−

2k+1
2

= (−1)k
(2k − 1)!

22k(k − 1)!
(1 + x)−

2k+1
2

= (−1)k
(2k)! 1

2k
1
222k+1 1

kk!
(1 + x)−

2k+1
2

= (−1)k
(2k)!

22k+1k!
(1 + x)−

2k+1
2 = f (k+1)(x)

as we were required to prove.

(ii) The Taylor Series at x0 has the form ( ∞∑
n=0

f (n)(x0)

n!
(x− x0)n

)

and for x0 = 0 we obtain:

f (n)(0) = −(−1)n
(2n− 2)!

22n−1 (n− 1)!

Since f(0) =
√

0 + 1 = 1, we have: (
1−

∞∑
n=1

(−1)n(2n− 2)!

22n−1 (n− 1)!n!
xn

)

Exercise 59:

(a) Determine the Taylor formula for m = 2 about the point x0 = 8 for the function f(x) = x2/3, x ≥ 1, find
an expression for the Lagrange form of the remainder.

(b) For natural numbers n and real x, 1 + x > 0, show using the Taylor formula that

(1 + x)n ≥ 1 + nx.

Solution:

(a) f(x) = x
2
3 , f(x0) = 8

2
3 = 4; f ′(x) = 2

3x
−1
3 , f ′(x0) = 1

3 ; f ′′(x) = −2
9 x

−4
3 , f ′′(x0) = − 1

72 ; f ′′′(x) = 8
27x

−7
3 .

We obtain f(x) = 4 + 1
3 (x− 8)− 1

2!
1
72 (x− 8)2 + 1

3!
8
27ξ

−7
3 (x− 8)3 for some ξ between x and x0 = 8.

We now find bounds on |f ′′′(ξ)|, where ξ is between x and x0 = 8.

For ξ > min(x, 8) ≥ 1 we have 8
27ξ

−7
3 ≤ 8

27 . Thus, |R2(x, ξ)| ≤ 1
3!

8
27 |x− 8|3 = 4

81 |x− 8|3.

(b) For n = 1 this is obvious and for n ≥ 2 we defined f(x) to be the right-hand-side of the given expression.
It follows that

f ′(x) = n (1 + x)n−1, f ′′(x) = n (n− 1) (1 + x)n−2.

The Taylor expansion of f about 0 is given by

f(x) = f(0) + f ′(0)x+ f ′′(ξ)
x2

2
= 1 + nx+ n (n− 1) (1 + ξ)n−2

x2

2

where ξ is between 0 and x. Since ξ > −1, the term 1 + ξ is nonnegative and so n(n− 1)(1 + ξ)n−2 ≥ 0. It
follows that

(1 + x)n = 1 + nx+ n (n− 1) (1 + ξ)n−2
x2

2
≥ 1 + nx,

as required.

Exercise 60:

(a) Define the function f : R → R by f(x) = 1 for x ≥ 0 and f(x) = −1 for x < 0. Show that the function
F (x) =

∫ x
0
f(t)dt is not a primitive (antiderivative) of f .

(b) Given g : R>0 → R defined by g(x) =
∫ x
2π

sin(t)
t dt. Find the Taylor polynomial p2(x) of degree 2 about

x0 = 2π.



Solution:

(a) For x ≥ 0 we have F (x) =
∫ x
0

1dx = x and for x < 0 we have F (x) =
∫ x
0

(−1)dx = −x, so F (x) = |x|. This
function is not differentiable at x = 0 and so cannot be a primitive.

(b) Using the fundamental theorem of Calculus we obtain g′(x) = sin(x)
x . It follows that

g′′(x) =

(
sin(x)

x

)′
=

cos(x)x− sin(x)

x2
.

Plugging in x0 yeilds, g(2π) = 0, g′(2π) = 0 and g′′(2π) = 1
2π . The Taylor polynomial is hence

p2(x) =
f(2π)

0!
+
f ′(2π)

1!
(x− 2π) +

f ′′(2π)

2!
(x− 2π)2 =

1

4π
(x− 2π)2.

Due date: Your written solutions are due at 14:00 on Tuesday, 29 January, 2019.
Please submit them at the beginning of the problem session.

Website: For detailed information regarding this course visit the following web page:

http://www.math.kit.edu/iag6/edu/am12018w/en


