Solutions to problem sheet 1

Problem 1.
Let \(f(n) \) denote the largest number of edges among all triangle-free graphs that are non-bipartite. For all \(n \geq 5 \) prove that

(a) \(f(n) \leq \frac{1}{4}(n - 1)^2 + 1 \),
(b) \(f(n) = \frac{1}{4}(n - 1)^2 + 1 \), if \(n \) is odd.

Solution.

(a) If \(n = 5 \) the claim is easily checked. So we assume that \(n \geq 6 \) and proceed by induction. Consider a non-bipartite, triangle-free graph \(G \) on \(n \) vertices. Then \(G \) has odd cycles since it is not bipartite. Let \(C \) be a shortest odd cycle in \(G \). Then there are no other edges in \(G[V(C)] \), since any chord in \(C \) yields a shorter odd cycle. Let \(V \) denote the set of vertices not in \(C \). Each vertex in \(V \) has at most two neighbors in \(C \) since otherwise there is a shorter odd cycle in \(G \). Indeed, if \(v \in V \) has three (or more) neighbors in \(C \) then one of the “segments” between two such neighbors has an even number of vertices, so yields an odd cycle together with \(v \). Moreover \(G[V] \) has no triangles and hence has at most \(\lfloor \frac{|V|^2}{4} \rfloor \) edges by Turán’s theorem. Since \(|V| \leq n - 5 \) the number of edges in \(G \) is at most
\[
\lfloor \frac{|V|^2}{4} \rfloor + 2|V| + n - |V| \leq \frac{(n-5)^2+4(n-5)+4(n-1)}{4} + 1 = \frac{1}{4}(n-1)^2 + 1.
\]

(b) Let \(t = \frac{n-1}{2} \). Then consider \(K_{t,t} \) minus an edge \(xy \) and add a vertex \(u \) with edges \(ux \) and \(uy \). This graph has \(n \) vertices, \(\frac{(n-1)^2}{4} + 1 \) edges, is not bipartite, and has no triangles.

Remark: Actually one can prove with the same arguments as in (a) and a construction like in (b) that \(f(n) = \text{ex}(n-1, K_3) + 1 \) for all \(n \geq 5 \). \(\square \)

Problem 2.
Consider a graph \(G \) on \(n \) vertices and \(m \) edges.

(a) Prove that \(G \) contains at least \(4m \frac{m}{3n} (m - \frac{n^2}{4}) \) triangles.

(b) Prove that \(G \) contains at least \(\lfloor \frac{n^2}{4} \rfloor \) triangles if \(m \geq \lfloor \frac{n^2}{4} \rfloor + 1 \).

Show that the result is sharp for \(n \geq 3 \).

Solution.

(a) We follow the proof of Mantel’s theorem in Conlon’s lecture notes:

Consider a graph \(G \) on \(n \) vertices and \(m \) edges. Two adjacent vertices \(x \) and \(y \) have at least \(d(x) + d(y) - n \) common neighbors. Therefore any edge \(xy \) is contained in at least \(d(x) + d(y) - n \) triangles. Hence the total number of triangles in \(G \) is at least
\[
\frac{1}{3} \sum_{xy \in E(G)} (d(x)+d(y)-n) = \frac{1}{3} \sum_{x \in V(G)} d^2(x) - \frac{1}{3} nm \geq \frac{\sum_{x \in V(G)} d(x)^2}{3n} - \frac{1}{3} nm = \frac{4m^2}{3n} - \frac{1}{3} nm.
\]

Jonathan Rollin
http://www.math.kit.edu/iag6/edu/extremalgt2016s
(b) Consider a graph \(G \) on \(n \) vertices and at least \(\left\lfloor \frac{n^2}{4} \right\rfloor + 1 \) edges. For \(n \leq 2 \) there is no graph on \(n \) vertices and \(\left\lfloor \frac{n^2}{4} \right\rfloor + 1 \) edges and for \(n = 3, 4 \) it is easy to see that any graph on \(n \) vertices and \(\left\lfloor \frac{n^2}{4} \right\rfloor + 1 \) edges has at least \(\left\lfloor \frac{n}{2} \right\rfloor \) triangles. So we assume that \(n \geq 5 \) and proceed by induction. We distinguish whether \(n \) is odd or even.

Consider the case \(n \) is odd. Not all vertices in \(G \) are of degree at least \(\left\lfloor \frac{n}{2} \right\rfloor \), since otherwise the number of edges is at least
\[
\frac{n}{2} \left\lfloor \frac{n}{2} \right\rfloor = \left\lfloor \frac{n^2}{4} \right\rfloor + \frac{1}{2} \left\lfloor \frac{n}{2} \right\rfloor > \left\lfloor \frac{n^2}{4} \right\rfloor + 1.
\]

Let \(v \) be a vertex of degree at most \(\left\lfloor \frac{n}{2} \right\rfloor \) and let \(G' = G - v \) be the graph obtained by removing \(v \). Then the number of edges in \(G' \) is at least
\[
\left\lfloor \frac{n^2}{4} \right\rfloor + 1 - \left\lfloor \frac{n}{2} \right\rfloor = \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n}{2} \right\rfloor + 1 - \frac{1}{2} \left\lfloor \frac{n}{2} \right\rfloor = \left\lfloor \frac{n}{2} \right\rfloor + 1 = \left\lfloor \frac{n-1}{2} \right\rfloor + 1.
\]

Therefore \(G' \), and hence \(G \), contains at least \(\left\lfloor \frac{n-1}{2} \right\rfloor = \left\lfloor \frac{n}{2} \right\rfloor \) triangles and we are done.

Consider the case \(n \) is even. Assume that there is a vertex \(v \) of degree at most \(\frac{n}{2} - 1 \). Let \(G' = G - v \) be the graph obtained by removing \(v \). Then the number of edges in \(G' \) is at least
\[
\frac{n^2}{4} + 1 - \left(\frac{n}{2} - 1 \right) = \left(\frac{n}{2} - 1 \right) \frac{n}{2} + 2 = \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor + 2 = \left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 2.
\]

Therefore \(G' \) contains a triangle. Moreover the graph obtained from \(G' \) by removing an edge from some triangle has at least \(\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1 \) edges and hence at least \(\left\lfloor \frac{n-1}{2} \right\rfloor \) triangles. Thus there are at least \(\left\lfloor \frac{n-1}{2} \right\rfloor + 1 = \frac{n}{2} \) triangles in \(G \).

Next assume that all vertices are of degree at least \(\frac{n}{2} \). For the sake of contradiction assume that \(G \) contains less than \(\left\lfloor \frac{n}{2} \right\rfloor \) triangles. Then there is an edge \(xy \) in \(G \) that is not contained in any triangle, since otherwise there are less than \(3 \left\lfloor \frac{n}{2} \right\rfloor \leq \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n}{2} \right\rfloor = \left\lfloor \frac{n^2}{4} \right\rfloor \) edges in \(G \). Let \(G' \) be the graph obtained from \(G \) by removing \(x \) and \(y \). The total number of edges in \(G \) incident to \(x \) or \(y \) is at most \(n - 1 \), since \(x \) and \(y \) have no common neighbors. Thus \(G' \) has at least \(\left\lfloor \frac{n^2}{4} \right\rfloor + 1 - (n - 1) = \left\lfloor \frac{(n-2)^2}{4} \right\rfloor + 1 \) edges. Hence \(G' \) contains at least \(\left\lfloor \frac{n-2}{2} \right\rfloor \) triangles by induction. Observe that each vertex in \(G' \) is adjacent to either \(x \) or \(y \) in \(G \), since each vertex has degree at least \(\frac{n}{2} \) in \(G \). There are at most \(\left\lfloor \frac{n-2}{4} \right\rfloor \left\lfloor \frac{n-2}{4} \right\rfloor = \left\lfloor \frac{(n-2)^2}{4} \right\rfloor \) edges between the neighborhoods of \(x \) and \(y \). Therefore there is an edge within one of these neighborhoods. This edge is part of a triangle in \(G \) that is not in \(G' \). Hence \(G \) contains at least \(\left\lfloor \frac{n^2}{4} \right\rfloor + 1 = \left\lfloor \frac{n}{2} \right\rfloor \) triangles.

\[\square\]

Problem 3.

Let \(S \) be a set of \(n \) points in \(\mathbb{R}^2 \) such that the distance between any pair of points is at most \(1 \). Prove that there are at most \(\left\lfloor \frac{n^2}{4} \right\rfloor \) pairs of points in \(S \) whose distance is greater than \(\frac{1}{\sqrt{2}} \).

Solution.

Construct a graph \(G \) with the points as vertices by putting an edge \(uv \) in \(G \) if and only if the distance between \(u \) and \(v \) is greater than \(\frac{1}{\sqrt{2}} \). Then there is no \(K_4 \) in \(G \). Otherwise, in the convex hull spanned by 4 points that induce a \(K_4 \) there will be an angle of at least 90 degrees at some point \(v \) between edges \(uv \) and \(vw \). Then the distance between \(u \) and \(w \) is greater than 1, a contradiction. Therefore \(G \) has at most \(\left\lfloor \frac{n^2}{4} \right\rfloor \) edges. \[\square\]
Problem 4.
Consider a graph H. A graph G with $|V(G)| \geq |V(H)|$ is called H-saturated if G contains no copy of H, but adding any edge to G yields a graph containing H.

For any $n \geq t \geq 3$ determine the minimum number of edges in a K_t-saturated graph on n vertices.

Solution.
We will prove a stronger statement. A graph G on $n \geq t$ vertices is called strongly K_t-saturated if adding any edge to G yields a graph containing at least one more copy of K_t than G. For $n \geq t \geq 3$ let $s(n,t)$ denote the minimum number of edges in a K_t-saturated graph on n vertices and let $s^*(n,t)$ denote the minimum number of edges in a strongly K_t-saturated graph on n vertices.

Let $G = G(n,t)$ be the graph obtained from K_{t-2} and a disjoint set S of $n-t+2$ isolated vertices by adding all edges between this K_{t-2} and S. Then G is K_t-saturated, since the largest clique in G has $t-1$ vertices and adding any edges within S yields a copy of K_t. Therefore

$$s^*(n,t) \leq s(n,t) \leq |E(G)| = \left(\frac{t-2}{2}\right) + (t-2)(n-t+2). \quad (1)$$

We will prove that any graph that has the minimum number of edges among all strongly K_t-saturated graphs on n vertices is isomorphic to G. This shows that

$$s^*(n,t) = s(n,t) = \left(\frac{t-2}{2}\right) + (t-2)(n-t+2).$$

Consider $t = 3$. In this case G is a star with n edges. Let H be a strongly K_3-saturated graph on n vertices and $s^*(n,t)$ edges. Then H is a tree, since $s^*(n,3) \leq n-1$ by inequality (1) and H is clearly connected. This shows already that $s^*(n,3) = s(n,3) = n-1$. Moreover it is not hard to see that the only strongly-K_3-saturated tree is a star, because each pair of vertices is of distance at most 2.

Consider $t \geq 4$. If $n = t$, then $G = G(t,t)$ is a complete graph minus one edge and is clearly the unique strongly K_t-saturated graph on t vertices (up to isomorphism). So consider $n > t$. Let H be a strongly K_t-saturated graph on n vertices and $s^*(n,t)$ edges. There are two non-adjacent vertices x and y in H. Let H^* be the graph obtained from H by removing y and adding an edge vx whenever $vy \in E(H)$ (i.e., contract x and y).

Adding an edge to H^* creates a new copy of K_t, since adding the corresponding edge to H creates a new copy of K_t that contains at most one of x and y. So H^* is strongly K_t-saturated. Since adding the edge xy to H creates a copy of K_t, there is a set S of $t-2$ common neighbors of x and y in H forming a complete graph. Therefore H^* has at most $e(H) - (t-2) \leq \left(\frac{t-2}{2}\right) + (t-2)(n-t+2) - (t-2) = \left(\frac{t-2}{2}\right) + (t-2)((n-1)-t+2)$ edges. Inductively H^* has $s^*(n-1,t)$ edges and therefore is isomorphic to $G(n-1,t)$. So there is a set K of $t-2$ vertices of degree $n-2$ forming a clique in H^* and the remaining vertices form an independent set. Since the vertices in S form a clique in H^*, at most one vertex in S is not in K. So there is a vertex $z \in S \cap K$. It is of degree $n-2$ in H^*, i.e., z is adjacent to all other vertices in H^*. Since z is a common neighbor of x and y in H it has degree $n-1$ in H.

Thus removing z from H yields a strongly K_{t-1}-saturated graph H' with at most $\left(\frac{t-2}{2}\right) + (t-2)(n-t+2) - (n-1) = \left(\frac{t-3}{2}\right) + (t-3)((n-1) - (t-3))$ edges. Inductively this number of edges equals $s^*(n-1,t-1)$ and hence H' is isomorphic to $G(n-1,t-1)$. Thus H is isomorphic to $G(n,m)$ since z has degree $n-1$ in H, i.e., is adjacent to all other vertices in H. \[\square\]

Jonathan Rollin

http://www.math.kit.edu/iag6/edu/extremalgt2016s