Ramsey numbers for triples

July 5, 2016

Let \(r_3(s, t) \) be the smallest integer \(n \) such that in any red/blue coloring of the triples of an \(n \)-element set, there is either an \(s \)-element set all whose triples are red or a \(t \)-element set all whose triples are blue.

Theorem 0.1. If \(s \geq 3 \) and \(t \geq 4 \), then \(r_3(s, t) \leq 2^{(r_{s-1,t-1})}, r_3(3,3) = 3. \)

Proof. Let \(X \) be an ordered set of vertices. We write \(X' < X'' \) for subsets \(X' \) and \(X'' \) of \(X \) if each element of \(X' \) is less than every element of \(X'' \). Let \(c : \binom{X}{3} \rightarrow \{r,b\} \) be a coloring. We say that a set \(S \) of vertices makes an edge \(xy \) happy if \(\{ x, y \} \subset S \) and for any \(z \in S \) all triples \(xyz \) are of the same color. We say that a set \(S \) of vertices makes a set \(X' \) happy if \(X' < S \) and \(c(xyz) = c(xyz') \), for any \(x, y \in X', z, z' \in S \cup X' \), \(\{ x, y \} \subset \{ z, z' \} \).

Note that for any edge \(xy \) and any set \(S' > \{ x, y \} \) there is \(S \subseteq S' \), such that \(|S| \geq |S'|/2 \) and \(S \) makes \(xy \) happy. Indeed, just take the majority color class.

Claim: For any \(k \) s.t. \(n \geq 2^{(k)^2} \), there are sets \(X_k \) and \(S_k \) such that \(|X_k| = k, S_k \) makes \(X_k \) happy, and

\[
|S_k| \geq \frac{n}{2^{(k)^2}} - 1.
\]

Proof by induction on \(k \). When \(k = 2 \), then there is such an \(S_2 \) of size at least \((n-2)/2 = n/2 - 1 \). Assume that the statement is true for \(k = q + 1 \). By induction there is a set \(X_q \) and a set \(S_q \) of elements greater than any element in \(X_q \) with \(|S_q| \geq n/2^{(q)^2} - 1 \geq 3 \) such that \(S_q \) makes all pairs from \(X_q \) happy and \(|X_q| = q \). Let \(x \in S_q \), be the smallest element and let \(X_{q+1} = X_q \cup \{ x \} \). We need to find a subset of \(S_q \) that makes all edges \(xy \) happy, where \(y \in X_q \). Let \(X_q = y_1, \ldots, y_q \). There is a subset \(S' \) of size \((|S_q| -1)/2\) that makes \(xy_1 \) happy, there is a subset \(S'' \) of \(S' \) that makes all \(xy_1 \) and \(xy_2 \) happy and \(|S''| \geq |S'|^2/2 \), etc., so there is a subset \(S^{(k)} \) of size \((|S_q| -1)/2^k\) that makes all \(xy \) happy, \(y \in X_q \). Let \(S_{q+1} \) be this subset \(S^{(k)} \). So, by induction

\[
|S_{q+1}| \geq (|S_q| -1)/2^q \geq \frac{n}{2^{(q)^2}} - 2 \cdot 2^{-q} \geq \frac{n}{2^{(q)^2}} - 1.
\]

This proves the Claim.

If \(s = t = 3 \) then we need to force just a single red triple or a single blue triple. So, it is clear that \(r_3(3, 3) = 3 \).

Let \(s \geq 3 \) and \(t \geq 4 \). Assume that \(n \geq 2^{(r_{s-1,t-1})} \). Let \(m = r(s-1, t-1) - 1 \). We see that \(n \geq 2^{(m+1)} \geq 2^{(3)^2} \).

By the Claim there are sets \(X_m \) and \(S_m \), such that \(S_m \) that makes \(X_m \) happy, \(|X_m| = m \) and

\[
|S_m| \geq \frac{n}{2^{(m)^2}} - 1 \geq 2^{(r_{s-1,t-1})} - (r_{s-1,t-1}) - 1 = 2^{r(s-1, t-1)} \geq 2.
\]

Let \(z \) be the smallest element in \(S_m \) and \(z' \) be any other element of \(S_m \). Then \(\{ z' \} \) makes \(X_m \cup \{ z \} \) happy.

Note that \(|X_m \cup \{ z \}| = m + 1 = r(s-1, t-1) \). Let’s color an edge \(xy \) in \(X_m \cup \{ z \} \) red if all triangles \(xyz' \) are red. Color \(xy \) blue otherwise. Then by Ramsey theorem for graphs there is a red \(K_{s-1} \) or blue \(K_{t-1} \) with vertices in \(X_m \cup \{ z \} \). Then \(X_m \cup \{ z, z' \} \), contains a set on \(s \) elements with all red triples or a set on \(t \) elements with all blue triples.

\(\square \)