A proper vertex coloring c of a graph $G = (V, E)$ is called a greedy coloring if there is an order v_1, \ldots, v_n of V such that $c(v_1) = 1$ and for all $i = 2, \ldots, n$ we have

$$c(v_i) = \min \{ c \in \mathbb{N} \mid c(v_j) \neq c \forall v_j \in N(v_i) \text{ with } j < i \}. $$

The grundy number of G, denoted by $\Gamma(G)$, is the maximum k for which there exists a greedy k-coloring of G.

Problem 29. 5 points

(a) Determine $X = \min \{ k \in \mathbb{N} \mid \Gamma(T) \leq k \text{ for all trees } T \}$.

(b) Prove for any graph G that $\Gamma(G) \leq \max_{uv \in E(G)} \min\{\deg(u), \deg(v)\} + 1$.

Solution.

(a) We claim that $X = \infty$, namely that for every $k \in \mathbb{N}$ there exists a tree T_k with $\Gamma(T_k) \geq k$. We shall prove this claim by induction on k.

Induction base $k = 1$. It clearly suffices to define T_1 to be the one-vertex tree.

Induction step $k > 1$. We construct T_k as follows.

- For every $j \in [k - 1]$ take one copy of T_j, which exists by induction hypothesis. Let $v^1_1, \ldots, v^j_{n_j}$ be an ordering of $V(T_j)$ corresponding to a greedy coloring c_j on at least j colors. Moreover, let $w_j \in V(T_j)$ be a vertex with $c_j(w_j) = j$. (Indeed it holds that $w_j = v^j_{n_j}$, but we do not need it.)

- Take one extra vertex v^* and define T_k to be the tree composed of disjoint copies of T_1, \ldots, T_{k-1} and the vertex v^* with edges to w_1, \ldots, w_{k-1}.

We claim that $\Gamma(T_k) \geq k$. To this end consider the following vertex ordering of T_k

$$v^1_1, \ldots, v^1_{n_1}, v^2_1, \ldots, v^2_{n_2}, \ldots, v^{k-1}_1, \ldots, v^{k-1}_{n_{k-1}}, v^*$$

and the corresponding greedy coloring c. In particular, for each $i = 1, \ldots, k - 1$ the vertices of subtree T_i in T_k are considered in the order that forces vertex w_i to get color i in c. In the very end, v^* is considered, and it has neighbors w_1, \ldots, w_{k-1}. Thus we obtain $c(v^*) = k$, as desired.

(b) Let $\Gamma(G) = t$ and consider a greedy t-coloring of G. By the definition of greedy colorings every vertex x of color t is adjacent to a vertex y of color $t - 1$. Now note that $\deg(x) \geq t - 1$ and $\deg(y) \geq t - 1$. Therefore

$$\min\{\deg(x), \deg(y)\} \geq t - 1 = \Gamma(G) - 1,$$

which concludes the proof.
Now for every edge e

Without loss of generality let c construct a proper 3-edge-coloring c^* of G^* from a proper 4-coloring c of G. Solution.

Let G be any plane triangulation and G^* be its plane dual. First, we shall show how to construct a proper 3-edge-coloring c^* of G^* from a proper 4-coloring c of G.

Show that a planar triangulation is 4-colorable if and only if its plane dual is 3-edge-colorable.

Problem 30. 5 points

Show each of the following for any graph G.

(a) $\text{tr}(A(G)) = 0$

(b) $\text{tr}(A(G)^2)$ equals twice the number of edges of G

(c) $\text{tr}(A(G)^3)$ equals six times the number of triangles in G

Theorem 1. For any graph G, $\text{tr}(A(G)) = 0$.

Proof.

□

Problem 31. 5 points

Show each of the following for any graph G.

(a) $\text{tr}(A(G)) = 0$

(b) $\text{tr}(A(G)^2)$ equals twice the number of edges of G

(c) $\text{tr}(A(G)^3)$ equals six times the number of triangles in G

□

Prof. Maria Axenovich
http://www.math.kit.edu/iag6/edu/graphtheo2013w/
We are now ready to prove what the trace of A. Indeed, all three properties are implied by the following claim. Let us fix a graph $G = (V, E)$ on n vertices v_1, \ldots, v_n and write $A = A(G)$.

Claim. For all $t \geq 1$ the entry of A^t at position (i, j) equals the number of distinct walks in G from v_i to v_j with exactly t edges.

We prove the claim by induction on t. For $t = 1$ we have $A[i, j] = 1$ if $v_iv_j \in E$ and $A[i, j] = 0$ otherwise. So indeed $A[i, j]$ equals the number of distinct v_i-v_j-walks in G on exactly $t = 1$ edges.

For $t \geq 2$ we have by the definition of matrix multiplication

$$A^t[i, j] = \sum_{k=1}^{n} A^{t-1}[i, k] \cdot A[k, j] = \sum_{v_k \in N(v_j)} \#	ext{walks in } G \text{ with exactly } t - 1 \text{ edges}.$$

As every v_i-v_j-walk in G with exactly t edges can be uniquely split into an edge v_kv_j and an v_i-v_k-walk in G with exactly $t - 1$ edges, this proves the claim.

We are now ready to prove what the trace of A^t for $t = 0, 1, 2$ counts.

(a) \(\text{tr}(A) = \sum_{i=1}^{n} A[i, i] = \sum_{i=1}^{n} 0 = 0\).

(b) \(\text{tr}(A^2) = \sum_{i=1}^{n} A^2[i, i] = \sum_{i=1}^{n} \#	ext{walks with 2 edges} = \sum_{i=1}^{n} \deg(v_i) = 2|E|\).

(c) \(\text{tr}(A^3) = \sum_{i=1}^{n} A^3[i, i] = \sum_{i=1}^{n} \#	ext{walks with 3 edges, which equals 6 times the number of triangles in } G, \text{ as every closed walk on three edges is a triangle and every triangle is counted exactly 6 times.}\)

\[\square\]

Problem 32. 5 points

Prove that if a graph G is d-regular, then d is an eigenvalue of $A(G)$, and that if G is additionally bipartite, then $-d$ is also an eigenvalue of $A(G)$.

Solution.

Let G be an n-vertex graph, A be its adjacency matrix, and λ_{\max} be its largest eigenvalue. From the lecture we know that

$$\delta(G) \leq \lambda_{\max} \leq \Delta(G).$$

In particular, if G is d-regular, then $\delta(G) = \Delta(G) = d$ and thus $\lambda_{\max} = d$.

For the second part, let us assume that G is bipartite with bipartition classes A and B. Let $w = (w_1, \ldots, w_n)$ be an eigenvector belonging to eigenvalue $\lambda_{\max} = d$. We define a vector $w' = (w'_1, \ldots, w'_n)$ by

$$w'_i = \begin{cases} w_i & \text{if } v_i \in A, \\ -w_i & \text{if } v_i \in B. \end{cases}$$

Now we compute the i-th coordinate of $A \cdot w'$ as

$$\sum_{j=1}^{n} A[i, j]w'_j = -\sum_{j=1}^{n} A[i, j]w_j = -\lambda_{\max}w_i = -\lambda_{\max}w'_i \quad \text{if } v_i \in A,$n$$

and

$$\sum_{j=1}^{n} A[i, j]w'_j = \sum_{j=1}^{n} A[i, j]w_j = \lambda_{\max}w_i = -\lambda_{\max}w'_i \quad \text{if } v_i \in B.$$
Thus $A \cdot w' = -\lambda_{\text{max}} w'$, i.e., w' is an eigenvector of A and the corresponding eigenvalue is $-\lambda_{\text{max}} = -d$. □

Open Problem.
Prove or disprove that for every connected graph G and every $k \geq 1$ we have

$$t_k \geq d_k - k + 2,$$

where d_k denotes the k-th largest degree in G and t_k denotes the k-th largest eigenvalue of $D - A(G)$, with $D[i, i] = \deg(v_i)$ and $D[i, j] = 0$ for all $i \neq j$.

Prof. Maria Axenovich http://www.math.kit.edu/iag6/edu/graphtheo2013w/