Problem sheet 14

Due date: **February 12, 12:00 am.**

Discussion of solutions: February 7.

(农家乐：Please prepare solutions for **at most three** problems.)

Problem 53. 5 points
Show that every \mathbb{R}-flow f on a graph G decomposes into cycles, i.e., that there exists \mathbb{R}-flows f_1, \ldots, f_k in G such that $f = \sum_{i=1}^{k} f_i$ and for $i = 1, \ldots, k$ the set of edges with non-zero flow value in f_i is a cycle.

Problem 54. 5 points
Let H be a group, G be a connected graph and T a spanning tree of G. Prove that every H-flow f on G is uniquely determined by its values on the edges not in T.

Problem 55. 5 points
Let T be the infinite complete k-ary tree with root r. For some fixed $0 < p < 1$ every edge of T is deleted independently with probability p. Determine the expected number of vertices in the component containing r.

Problem 56. 5 points
A tournament is a set of n teams and one match between any two teams. Assume that every match has a winner, there is no draw. Is it possible that in some tournament for every triple of teams there exists a fourth team that wins against each team in the triple?

Open Problem.
Prove or disprove that a random graph $G(2^d, \frac{1}{2})$ almost surely contains a spanning d-dimensional cube.