Solution sheet 14

Problem 53. 5 points
Show that every \mathbb{R}-flow f on a graph G decomposes into cycles, i.e., that there exists \mathbb{R}-flows f_1, \ldots, f_k in G such that $f = \sum_{i=1}^k f_i$ and for $i = 1, \ldots, k$ the set of edges with non-zero flow value in f_i is a cycle.

Solution.
We proceed by induction on the number m of edges with non-zero flow value in f.

Induction base $m = 0$. Here we have $f = 0$ and there is nothing to show.

Induction step $m \geq 1$. Let $e_1 = u_1v_1$ be any edge in G with $f(u_1, v_1) \neq 0$. We define a walk in G starting with e_1 as follows. For $i \geq 2$ let $e_i = u_iv_i$ be any edge in G with $u_i = v_{i-1}$, $v_i \neq u_{i-1}$ and $f(u_i, v_i) \neq 0$. Such an edge exists as

\[\sum_{v \in N(u_{i-1})} f(v_{i-1}, v) = 0 \]

implies that either no edge at v_{i-1} carries flow, or at least two edges in v_{i-1} carry flow. Now we have defined a walk in a finite graph, which thus has to contain a simple cycle $C = w_1, \ldots, w_{|C|} = w_1$. Let $f_{\text{min}} = \min\{|f(w_i, w_{i+1})| \mid i = 1, \ldots, |C| - 1\}$ and without loss of generality w_1w_2 be an edge with $f(w_1, w_2) = f_{\text{min}}$. We define two \mathbb{R}-flows f_1 and f' by

\[f_1(u, v) = \begin{cases} 0 & \text{if } uv \notin C \\ f_{\text{min}} & \text{if } u = w_i, v = w_{i+1} \text{ for some } i \in \{1, \ldots, |C| - 1\} \\ -f_{\text{min}} & \text{if } u = w_{i+1}, v = w_i \text{ for some } i \in \{1, \ldots, |C| - 1\}. \end{cases} \]

and

\[f'(u, v) = f(u, v) - f_1(u, v) \quad \text{for all } uv \in E(G). \]

Now clearly, $f = f_1 + f'$ and the edges with non-zero flow value in f' are a strict subset of the edges with non-zero flow value in f. Indeed, for edge w_1w_2 we have $f(w_1, w_2) \neq 0 = f'(w_1, w_2)$. In particular, f' has at most $m - 1$ edges with non-zero flow. Applying induction to f' we obtain \mathbb{R}-flows f_2, \ldots, f_k each of whose edge sets with non-zero flow form a cycle such that $f' = \sum_{i=2}^k f_i$. Together we have

\[f = f_1 + \sum_{i=2}^k f_i, \]

which concludes the proof. \qed

Problem 54. 5 points
Let H be a group, G be a connected graph and T a spanning tree of G. Prove that every H-flow f on G is uniquely determined by its values on the edges not in T.

Solution.
Let f be an H-flow of G. And T be a forest in G. We shall show by induction on the number of edges in T that f is uniquely determined by its values on the edges in G not in T.

Prof. Maria Axenovich http://www.math.kit.edu/iag6/edu/graphtheo2013w/
Induction base \(|E(T)| = 0\). Here is nothing to show.

Induction base \(|E(T)| \geq 1\). Let \(v\) be a leaf in \(T\) and \(u\) be its unique neighbor in \(T\). By the definition of an \(H\)-flow we have

\[
0 = \sum_{w \in N(v)} f(v, w) = f(v, u) + \sum_{w \in N(v), w \neq u} f(v, w),
\]

and thus \(f(v, u) = -\sum_{w \in N(v), w \neq u} f(v, w)\). We have uniquely determined \(f\) on all edges not in \(T\) and the edge \(uv\). Applying induction to \(f\) and \(T - uv\) completes the proof. \(\square\)

Problem 55. 5 points

Let \(T\) be the infinite complete \(k\)-ary tree with root \(r\). For some fixed \(0 < p < 1\) every edge of \(T\) is deleted independently with probability \(p\). Determine the expected number of vertices in the component containing \(r\).

Solution.

Let \(S\) be the set of vertices in the component containing \(r\).\(^1\) In order to calculate the expected size of \(S\) we first, we determine the probability that a given vertex \(v\) lies in \(S\).

If \(d \geq 0\) denotes the distance of \(v\) from \(r\) (counted by number of edges), then

\[
\mathbb{P}[v \in S] = (1 - p)^d
\]

since each of the \(d\) edges must no be deleted, which happens with probability \((1 - p)^d\). Now we have

\[
\mathbb{E}[|S|] = \sum_{v \in V(T)} \mathbb{P}[v \in S] = \sum_{d=0}^{\infty} k^d \cdot (1 - p)^d = \sum_{d=0}^{\infty} (k(1 - p))^d,
\]

because the number of vertices in \(T\) at distance \(d\) from the root is exactly \(k^d\). This is a geometric series of the form \(\sum_{d=0}^{\infty} a^d\) which converges if and only if \(|a| < 1\), in which case the limit is given by \(1/(1 - a)\). Thus we have

\[
\mathbb{E}[|S|] = \begin{cases}
\infty & \text{if } p \leq \frac{k-1}{k} \\
\frac{1}{k(1-p)} & \text{if } p > \frac{k-1}{k}.
\end{cases}
\]

Problem 56. 5 points

A tournament is a set of \(n\) teams and one match between any two teams. Assume every match has a winner, there is no draw. Is it possible that in some tournament for every triple of teams there exists a fourth team that wins against each team in the triple?

Solution.

We shall prove that such tournaments indeed exist with probabilistic means. Let \(n\) be a natural number, to be determined later. Consider a random tournament \(T\) with \(n\) teams in which the winner of every match is chosen uniformly at random with probability \(1/2\).

Then for three fixed teams \(\{x, y, z\}\) and a fourth team \(w\) the probability that \(w\) wins against each of the three teams is \(2^{-3} = 1/8\). Hence, the probability that \(w\) loses against at least one of \(x, y, z\) is \(7/8\). Now we can compute the probability of the bad event as

\[
\mathbb{P}[\text{some team wins against at least one team in } \{x, y, z\}] = \left(\frac{7}{8}\right)^{n-3},
\]

\(^1\)Bold fold indicates that this is a random variable, rather than an actual set.

Prof. Maria Axenovich
http://www.math.kit.edu/iag6/edu/graphtheo2013w/
because the events for distinct w are independent. We have $\binom{n}{3}$ tuples and thus by union bound we get

$$\mathbb{P}[T \text{ not good}] \leq \binom{n}{3} \left(\frac{7}{8} \right)^{n-3},$$

which is less than 1 for $n \geq 91$. Hence, as soon as n is at least 91 there exists a tournament in which for every triple there is a team that wins against at least one in the triple. \qed

Open Problem.
Prove or disprove that a random graph $G(2^d, \frac{1}{2})$ almost surely contains a spanning d-dimensional cube.