Home | english  |  Impressum  |  Datenschutz  |  Sitemap  |  Intranet  |  KIT
Arbeitsgruppe Topologie

Kollegiengebäude Mathematik (20.30)
Zimmer 1.014

Karlsruher Institut für Technologie
Fakultät für Mathematik
Institut für Algebra und Geometrie
Englerstr. 2 Mathebau (20.30)
76131 Karlsruhe

Montag - Freitag
10:00 - 11:30 Uhr

Tel.: 0721 608 42059

Fax.: 0721 608 42148

RTG Lecture “Asymptotic Invariants and Limits of Groups and Spaces” (Sommersemester 2018)

Dozent: Prof. Dr. Roman Sauer, Prof. Dr. Wilderich Tuschmann
Veranstaltungen: Vorlesung (0122150)
Semesterwochenstunden: 4

Vorlesung: Dienstag 9:45-13:00 SR 2.58
Dienstag 15:00-16:30 SR 1.067
Dozent Prof. Dr. Roman Sauer
Sprechstunde: nach Vereinbarung
Zimmer 1.001 Kollegiengebäude Mathematik (20.30)
Email: roman.sauer@kit.edu
Dozent Prof. Dr. Wilderich Tuschmann
Sprechstunde:  n. V.
Zimmer 1.002 Kollegiengebäude Mathematik (20.30)
Email: tuschmann@kit.edu

This semester’s RTG lecture will be split between courses by Wilderich Tuschmann on “Geometric Convergence and Finiteness Theorems and their Applications” and by Gye-Seon Lee on “Coxeter Groups and Geometry”.

Geometric Convergence and Finiteness Theorems and their Applications (Wilderich Tuschmann)

Abstract: I will discuss finiteness and infiniteness results for Riemannian manifolds with curvature bounds and, more generally, for Alexandrov spaces, along with applications inside and outside Riemannian geometry. The underlying concepts and techniques involve, among others, tools form comparison geometry, Cheeger-Gromov convergence of Riemannian manifolds, Gromov-Hausdorff convergence of metric spaces, and Cheeger-Fukaya-Gromov collapsing theory, and I shall also include primers on these topics as well.

Prerequisites: Some solid knowledge of differential geometry and algebraic and differential topology.

Coxeter Groups and Geometry (Gye-Seon Lee)

Abstract: Coxeter groups are finitely generated groups that resemble the groups generated by reflections. They play important roles in the various areas of mathematics. In particular there are many connections between Coxeter groups and geometry. This lecture focuses on how one can use Coxeter groups to construct interesting examples in geometry. It also provides a gentle introduction to the deformation theory of geometric structures along the way.