Home | english  |  Impressum  |  Datenschutz  |  Sitemap  |  Intranet  |  KIT
Arbeitsgruppe Angewandte Analysis

Kollegiengebäude Mathematik (20.30)
Zimmer 2.029

Englerstraße 2
76131 Karlsruhe

Dr. Kaori Nagato-Plum

HM I, II, III: für Studierende der Physik, Elektrotechnik
Übungsscheine für HM: für die Studierende der Physik
Numerische Methoden (ETIT)
zusätzlich: studienbegleitende Klausuren zu den Vorlesungen der Dozenten der Arbeitsgruppe.

Mo -- Fr 10:00-12:00

Tel.: 0721 608-42056

Fax.: 0721 608-46214

AG Mathematische Physik (Sommersemester 2018)

Dozent: Prof. Dr. Dirk Hundertmark
Veranstaltungen: Seminar (0174900)
Semesterwochenstunden: 2

Seminar: Dienstag 9:45-11:15 SR 2.66
Seminarleitung Prof. Dr. Dirk Hundertmark
Zimmer 2.028 Kollegiengebäude Mathematik (20.30)
Email: dirk.hundertmark@kit.edu

Vu Hoang (University of Texas at San Antonio)

On self-force in higher-order electrodynamics

In this talk, I discuss the unsolved problem of obtaining equations of motion for relativistic charged particles. The problem has a long history going back to work of Lorentz and Abraham, who modeled charged particles as rigid spheres. Motivated by applications in quantum theory, Dirac abandoned the rigid sphere model and proposed a model for point-like charged particles. By applying conservation of energy and momentum, he obtained the Lorentz-Dirac equation of motion, which gives rise to unphysical runaway solutions. One obvious problem with Dirac's calculation can be traced to the fact that the field energy of a point particle is infinite. A possible way out was suggested by B. Podolsky, F. Bopp and others: one can modify Maxwell's equations by adding a term containing higher-order derivatives of the field tensor to the Lagrangian. Unfortunately, Lorentz forces corresponding to the self-fields of particles are still not defined in a straightforward way. In a recent breakthrough however, M. Kiessling and A. S. Tahvildar-Zadeh prove the local well-posedness of the initial-value problem of point charges and field in Bopp-Podolsky electrodynamics. In the main part of the talk, I will discuss the recent successful rigorous computation of the self-force in Bopp-Podolsky electrodynamics by M. Radosz and myself as well as its connections to work by Gratus, Perlick and Tucker.