Exercise 1 We have

\[|u_n - u|^2 = \langle u_n - u, u_n - u \rangle = |u_n|^2 - 2\text{Re} \langle u_n, u \rangle + |u|^2. \]

By definition, \(u_n \rightharpoonup u \) means

\[\lim_{n \to \infty} \langle u_n, u \rangle = \langle u, u \rangle = |u|^2. \]

On the other hand we have

\[|u| \leq \liminf_{n \to \infty} |u_n| \leq \limsup_{n \to \infty} |u_n| \leq |u|, \]

i.e.,

\[|u_n| \to |u|. \]

Thus

\[|u_n - u|^2 \to 0, \]

i.e. \(u_n \to u \) in \(H \).

Exercise 2 Let \(a \in A \) be such that

\[\|y - a\| = d := \min_{x \in A} \|y - x\| \]

and set

\[b := y - a. \]

Now we show that \(b \in A^\perp \). So suppose, for contradiction, that \(b \notin A^\perp \). Then \(\beta := \langle b, x \rangle > 0 \) for some \(x \in A \). Clearly, \(x \neq 0 \) since otherwise \(\beta = 0 \). For any scalar \(\alpha \), we have

\[\|y - (a + \alpha x)\|^2 = \|b - \alpha x\|^2 = \|b\|^2 - 2\bar{\alpha} \beta - |\alpha|^2 \|x\|^2. \]

Choosing \(\bar{\alpha} := \frac{\beta}{\|x\|^2} \), we get

\[\|y - (a + \frac{\beta x}{\|x\|^2})\|^2 = \|b\|^2 - \frac{|\beta|^2}{\|x\|^2} < \|b\|^2 = \|y - a\|^2, \]

which is a contradiction to the fact that \(a \) is the minimizing vector of \(d \). Thus \(b \in A^\perp \).

To prove that this representation is unique, suppose that \(y \) can also be represented as

\[y = a' + b' \quad \text{with} \quad a' \in A, b' \in A^\perp. \]

Then

\[(a - a') + (b - b') = y - y = 0 \]

and

\[(a - a') \perp (b - b') \quad \text{since} \quad a - a' \in A \quad \text{and} \quad b - b' \in A^\perp. \]

Pythagoras’ theorem then gives

\[0 = \|(a - a') + (b - b')\|^2 = \|a - a'\|^2 + \|b - b'\|^2, \]

implying that \(a = a' \) and \(b = b' \).