3) Integriere den Faktor (Eulerscher Multiplikator)

Es sei \(f(x,y) dx + g(x,y) dy = 0 \) \((x,y) \in \mathbb{C}\)

in \(G \) nicht exakt.

Def: Eine Funktion \(\mu = \mu(x,y) \) \((\mu \in C^1(G))\) heißt integrierender Faktor für \(f/g \) falls (die zu \(\mu \) äquivalente

\[(\mu f) \, dx + (\mu g) \, dy = 0 \]

in \(G \) erfüllt ist.

Die Existenz von \(\mu \) bedeutet die folgende Bedingung

für \(\mu = \mu(x,y) \):

\[(\partial_2 \mu) \frac{f}{g} - (\partial_1 \mu) \frac{g}{f} = \mu \left(f \frac{\partial g}{f} - g \frac{\partial f}{g} \right) \]

Für Lösung dieser Gleichung machen wir den folgenden

Ansatz: Es sei \(y = y(x,y) \in C^1(G) \) gegeben, durch

\(y(x,y) = y_1 = x^2 + y^2 = x + y, x - y, xy, \frac{x}{y} \)

Berechnet \(H = H(y) \) so, dass

\[\mu = \mu(x,y) = H(y(x,y)), x,y \in \mathbb{C}, \]

Integrierender

Faktor für \(f/g \) wird, also (3) löst. (3) wird mit (4) zu:

\[H'(y(x,y)) = H'(y(x,y)) \tilde{w}(x,y) \quad \text{mit} \]

\[\tilde{w}(x,y) = \frac{D_1 y - D_2 x}{D_2 x + D_1 y - f(x,y) D_2 y + g(x,y) D_1 x} \quad \text{Der Ansatz} \]

(4) hat etwas gebracht, falls \(\tilde{w}(x) = W(y(x,y)) \) gilt,

dann kann dann wird (5) zu:

\[H'(y(x,y)) = H'(y(x,y)) W(y(x,y)) \quad \text{mit der Lösung} \]
Beispiel: \(y' + p(x)y + q(x)y = 0 \)
\(p(x,y) = \exp \left(\int \frac{1}{x^2 + y^2} \, dx \right) \)

\(2) \ y' - \left(x^2 + y^2 + x \right) y = 0 \)

Löst mit
\(x + y = x^2 + y^2 \) einen integrierenden Faktor

\[p(x,y) = \frac{1}{x^2 + y^2} \]. Die zugehörige exakte

Dort findet die Darstellung Beisp 2) in S. 27 mit...

2.5.4 \underline{Lineare Differentialgleichungen 2. Ordnung.} (und Äußere Worte)

\underline{Problemformulierung}

Es sei \(I \subseteq \mathbb{R} \) ein Intervall, \(x_0 \in I \).

Mit \(p, q : I \to \mathbb{R} \), gegebene stetige, beschränkte Funktionen, und

\[(y''(x) + p(x)y' + q(x)y) \]

gebildet und das folgende Problem gestellt:

\(y \in C^2[I] \) mit

\((y''(x_0) = f_0, x \in I, \)

\[y(x_0) = x_0, y'(x_0) = \beta \]

(wobei \(\alpha, \beta \) vorgegebene Zahlen sind)

Dieses Problem bezeichnen wir mit \(A(p, \alpha, \beta) \).
\(y \in A(p, \alpha, \beta) \) soll im folgenden eine Form haben, dass

\(y \) das Problem \(A(p, \alpha, \beta) \) löst.
Satz 1: Unter den obigen formulierten Voraussetzungen
besitzt das Problem \(A(p, a, b) \) für jedes Tripel
von Daten \(Ef, a, b \) genau eine Lösung.

\[\text{Folgerung: } \quad y \in A(0, 0, 0) \iff y = 0 \]

Satz 2 (Linearität der Problemstellung / Superpositionssatz)
Aus \(y_j \in A(p, a, b_j) \) (\(j = 1, \ldots, k \))
folgt für beliebige Zahlen \(c_j, \ldots, c_k \in \mathbb{R} \)
\[\sum_{j=1}^{k} c_j y_j \in A\left(\sum_{j=1}^{k} c_j p_j, \sum_{j=1}^{k} c_j a_j, \sum_{j=1}^{k} c_j b_j \right) \]

3. Struktur der Lösungen von \(A(p, a, b) \)

Mit der Bezeichnung (siehe auch [177])
\[L_p = \{ y : Ly = f \text{ und } I \} \quad (= \text{allgemeine Lösung der Gleichung } Ly = f) \]
gilt: \(\text{Satz 3: } \quad \exists \exists z, y_p \in L_p \text{ gegeben. Dann gilt } \)
\[L_p = \{ y \} / y = y_p + y_0, y_0 \in L_0 \quad \]
Ausführlich besagt dies:

Alle Lösungen von \(Ly = f \) erhält man, indem man
zu allen Lösungen der homogenen Gleichung \(Ly = 0 \)
eine Lösung \(y_p \) der inhomogenen Gleichung addiert.