Höhere Mathematik II

Lösung zum 7. Übungsbrett
Legt man ab bei der Abbildung \( B = \{ \mathbf{e}_1, \mathbf{e}_2 \} \) zu jedem die Spalten der Abbildungsmatrix die Bilder von \( \mathbf{e}_1 \) bzw. \( \mathbf{e}_2 \) und die sich die Abbildungsmatrix von \( \mathbf{e}_1 \) bzw. \( \mathbf{e}_2 \) mit \( \mathbf{A} \) zu einer Abbildung \( \mathbf{f} \).

i) \( \mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) d.h. \( \mathbf{f}(\mathbf{e}_1) = \mathbf{e}_2 \), \( \mathbf{f}(\mathbf{e}_2) = -\mathbf{e}_1 \)
d.h. \( \mathbf{f} \) beschreibt eine Drehung um den Winkel \( \varphi = -\frac{\pi}{2} \).

ii) \( \mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \) d.h. \( \mathbf{f}(\mathbf{e}_1) = \mathbf{e}_1 \), \( \mathbf{f}(\mathbf{e}_2) = -\mathbf{e}_2 \)
d.h. \( \mathbf{f} \) beschreibt die Spiegelung an der \( x \)-Achse.

iii) Die Abbildungsmatrix eines orthogonale Projektiors auf eine Gerade \( \mathbb{E} \), die mit der \( x \)-Achse den Winkel \( \varphi \) bildet, hat folgende Form (nachrechnen!):

\[
\mathbf{A} = \begin{pmatrix}
\cos^2 \varphi & \cos \varphi \sin \varphi \\
\cos \varphi \sin \varphi & \sin^2 \varphi
\end{pmatrix}
\]

Die Abbildungsmatrix lässt sich zu

\[
\mathbf{A} = \begin{pmatrix}
\frac{1}{4} & \frac{\sqrt{3}}{4} \\
\frac{\sqrt{3}}{4} & \frac{1}{4}
\end{pmatrix}
\]

d.h. \( \mathbf{f} \) ist die orthogonale Projektion auf die Gerade \( \mathbb{E} \) mit \( \varphi = \frac{\pi}{3} \).
iv) Die Abbildung durch eine Drehung um den Winkel $\phi$

hat die Gestalt

\[
A = \begin{pmatrix}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{pmatrix}
\]

Die $A = \begin{pmatrix}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{pmatrix}$, d.h. die durch eine Drehung um $\phi = \frac{\pi}{3}$.

v) $A = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}$. Dann gilt $A(x_1, x_2) = (x_1, x_2)$, $A(x_1, x_2) = x_1^2 + x_2^2$.

\[\textbf{Staten:}\]

\[
f \text{ bedingt eine Drehung.}\]

\[\textbf{Bsp.:} \text{ Bild in Rechteck } PQRS \text{ nach } f \text{ ab.}\]

Der Winkel der Drehung ist $\alpha$ zurück: $\tan \alpha = \frac{3}{2}$. 
Ist die Matrix \( A = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \) orthogonal, so hat

insbesondere beide Spalten die Norm 1. Es gilt folglich

\[ x^2 + y^2 = 1 \]

Daher existiert ein Winkel \( \psi_1 \in [0, 2\pi) \)

mit \( (x, y) = (\cos \psi_1, \sin \psi_1) \).

Ebenso gilt \( \rho^2 + \delta^2 = 1 \), also existiert ein Winkel \( \psi_2 \in [0, 2\pi) \)

mit \( (\delta^2 - \rho^2) = (\cos \psi_2, \sin \psi_2) \).

Die Matrix hat somit die Gestalt

\[ A = \begin{pmatrix} \cos \psi_1 & -\sin \psi_1 \\ \sin \psi_1 & \cos \psi_1 \end{pmatrix}. \]

Da \( A \) orthogonal ist, stehen die beiden Spalten senkrecht zueinander, dh. es gilt

\[ 0 = -\cos \psi_1 \sin \psi_2 + \sin \psi_1 \cos \psi_2 = \sin (\psi_1 - \psi_2). \]

Hieraus folgt \( \psi_1 - \psi_2 = k \pi \) mit \( k \in \mathbb{Z} \).

Daher ist

\[ -\sin \psi_2 = -\sin (\psi_1 - k \pi) = (-1)^k \sin \psi_1, \]

\[ \cos \psi_2 = \cos (\psi_1 - k \pi) = (-1)^k \cos \psi_1. \]

Mit \( e = \cos \psi_1 \) und \( z = \sin \psi_1 \) haben wir also die bekannte Darstellung.
(2) a) Für $E = x_1 e_1 + x_2 e_2 + x_3 e_3$ gilt

$$a^2 \times a^2 = 
\begin{pmatrix}
a_1 x_2 - a_2 x_1 \\
a_1 x_1 - a_2 x_2 \\
a_3 x_1 - a_2 x_3
\end{pmatrix} = 
\begin{pmatrix}
a_3 & a_1 & a_2 \\
a_1 & a_3 & -a_2 \\
-a_2 & -a_1 & a_3
\end{pmatrix} x^2_1$$

wenn $a_1, a_2, a_3$ die Komponenten von $a^2$ sind, dann

$$(a^2 \cdot a^2) a = 
\begin{pmatrix}
(x_1 a_1 + x_2 a_2 + x_3 a_3) a_1 \\
(x_1 a_1 + x_2 a_2 + x_3 a_3) a_2 \\
(x_1 a_1 + x_2 a_2 + x_3 a_3) a_3
\end{pmatrix}
\begin{pmatrix}
a_1^2 & a_2 a_1 & a_3 a_1 \\
a_1 a_2 & a_2^2 & a_3 a_2 \\
a_1 a_3 & a_2 a_3 & a_3^2
\end{pmatrix} x^2_1$$

Folglich ergibt sich

$$f(x^2) = c \cos \varphi E_2 + (\sin \varphi) 
\begin{pmatrix}
a_3 & -a_2 & a_1 \\
a_1 & 0 & -a_3 \\
-a_2 & a_3 & 0
\end{pmatrix}
\begin{pmatrix}
a_1^2 & a_2 a_1 & a_3 a_1 \\
a_1 a_2 & a_2^2 & a_3 a_2 \\
a_1 a_3 & a_2 a_3 & a_3^2
\end{pmatrix} x^2_1$$

Es gilt also $f(x^2) = Ax^2$ mit einer neuen Matrix $A$.
Diese Matrix ist die geometrische Drehkippmatrix, und die Linearität von $f$ ist damit auch gezeigt.
b) Nach $\ddot{a} \times \ddot{a} = \ddot{0}$ und $\ddot{a} \cdot \ddot{a} = \|\ddot{a}\|^2 = 1$ gilt

$$f_{\vec{a}}(\vec{b}) = (\cos \phi) \vec{a} \times (\vec{a} \times \vec{b}) + (1 - \cos \phi) (\vec{a} \cdot \vec{b}) \vec{a}$$

$$= (\cos \phi) \vec{a} \times (\vec{a} \times \vec{b}) + (1 - \cos \phi) \vec{a} = \vec{b}.$$ 

Für ein Vielfaches $\vec{c}$ des orthogonalen $\vec{a} \times \vec{b}$ gilt $\vec{c} \cdot \vec{b} = 0$, so dass wir auch

$$f_{\vec{a}}(\vec{c}) = (\cos \phi) \vec{c} + (\vec{c} \cdot \vec{a}) \vec{a}.$$ 

Um zu verhindern, was mit $\vec{c}$ passiert, betrachte wir die folgende Skizze.

\[\text{Diagramm:}\]

Aber nun beachte: Der Vektor $\vec{c}$ ist nicht eingezeichnet, er zeigt senkrecht aus der Zeichenfläche heraus. Welche gilt? Der $\vec{c}$ und $\vec{c}$ senkrecht zu einem und der Winkel zwischen ihnen also $\frac{\pi}{2}$ ist, gilt $\|\vec{a} \times \vec{c}\| = \|\vec{a}\| \|\vec{c}\| \sin \frac{\pi}{2} = \|\vec{c}\|.$

Für die eingezeichneten Vektoren $\vec{x}$ und $\vec{y}$ gilt $\vec{x} = (\cos \phi) \vec{c}$ und $\vec{y} = (\sin \phi) (\vec{c} \times \vec{a}).$

Somit ist $f_{\vec{a}}(\vec{c}) = \vec{x} + \vec{y}$ der Vektor, den man erhält, wenn man $\vec{c}$ um den Winkel $\phi$ drehst, und zwar um die durch $\vec{a}$ gegebene Achse.

Ein beliebiger Vektor $\vec{x} \in \mathbb{R}^2$ können wir abschließend als

$$\vec{x} = \lambda \vec{a} + \vec{c}$$

mit einem $\lambda \in \mathbb{R}$ und einem zu $\vec{a}$ orthogonalen Vektor $\vec{c}$.
Dann ist \( f_{\varphi}(\vec{v}) = \lambda f_{\varphi}(\vec{v}) + f_{\varphi}(\vec{v}) = \lambda \vec{v} + f_{\varphi}(\vec{v}) \).

Die Abbildung \( f_{\varphi} \) stellt daher ein Drehen um die Richtung \( \overrightarrow{\vec{v}} \) um die Drehachse \( \{ \lambda \vec{v} : \lambda \in \mathbb{R} \} \) dar.

c) Offenbar ist \( f_{\varphi}( f_{\beta}(\vec{v})) = f_{\varphi}(\vec{v}) = \vec{v} = f_{\alpha + \beta}(\vec{v}) \).

Lässt \( \vec{e} \) orthogonale \( \vec{v} \), so haben wir

\[
f_{\varphi}( f_{\beta}(\vec{v})) = f_{\varphi}( (\cos \beta) \vec{v} + (\sin \beta) (\vec{v} \times \vec{v}))
\]

\[
= (\cos \beta) f_{\varphi}(\vec{v}) + (\sin \beta) f_{\varphi}(\vec{v} \times \vec{v})
\]

\[
= (\cos \beta) \left[ (\cos \alpha) \vec{v} + (\sin \alpha)(\vec{v} \times \vec{v}) \right]
\]

\[
+ (\sin \beta) \left[ (\cos \alpha) (\vec{v} \times \vec{v}) + (\sin \alpha) (\vec{v} \times (\vec{v} \times \vec{v})) \right]
\]

\[
= 0
\]

\[
= (\cos \beta \cos \alpha - \sin \beta \sin \alpha) \vec{v} + (\cos \beta \sin \alpha + \sin \beta \cos \alpha) (\vec{v} \times \vec{v})
\]

\[
= \cos(\alpha + \beta) \vec{v} + \sin(\alpha + \beta) (\vec{v} \times \vec{v})
\]

\[
= f_{\alpha + \beta}(\vec{v}).
\]

Die Vektor \( \vec{v} \) läßt sich in eine Orthogonalbasis des \( \mathbb{R}^3 \) ergänzen.

Wie wir gerade gesehen haben, stimmen die Abbildungen \( f_{\varphi} \circ f_{\beta} \) und \( f_{\alpha + \beta} \) auf eine solche Basis überein.

Daraus folgt \( f_{\varphi} \circ f_{\beta} = f_{\alpha + \beta} \) bewiesen.
\[\begin{align*}
\det (A - \lambda E) &= \det \begin{pmatrix}
8 - \lambda & 0 \\
0 & -7 - \lambda
\end{pmatrix} = (8 - \lambda)(-7 - \lambda) + 54 \\
&= \lambda^2 - \lambda - 2 = (\lambda + 1)(\lambda - 2) \\
\text{Eigensystem} \quad \text{mit} \quad \lambda_1 = -1, \quad \lambda_2 = 2.
\end{align*}\]

\(\text{Eigenvektor zu } \lambda_1: \quad (A + E) \vec{x} = 0\)
\[
\begin{pmatrix}
9 & -6 \\
9 & -6
\end{pmatrix} \cdot \begin{pmatrix}
x \\
y
\end{pmatrix} = 0 \\
\Rightarrow \vec{x} \in \text{Lin}\left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}\right).
\]

\(\text{Eigenvektor zu } \lambda_2: \quad (A - 2E) \vec{x} = 0\)
\[
\begin{pmatrix}
6 & -6 \\
9 & -9
\end{pmatrix} \cdot \begin{pmatrix}
x \\
y
\end{pmatrix} = 0 \\
\Rightarrow \vec{x} \in \text{Lin}\left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right).
\]

\(\Pi_4 \: S = \begin{pmatrix} 2 & 1 \\
3 & 1 \end{pmatrix} \Rightarrow \quad S^4\)

\(S^{-1} AS = D = \begin{pmatrix} \lambda_1 & 0 \\
0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\
0 & 2 \end{pmatrix}.
\)

\(\text{Aufstellen} \: \quad S^{-1} = \begin{pmatrix} -1 & 1 \\
3 & -2 \end{pmatrix}.
\)

\(E_4 \: \begin{pmatrix} u_1 \\
v_1 \end{pmatrix} = A \begin{pmatrix} u_1 \\
v_1 \end{pmatrix} = SDS^{-1} \begin{pmatrix} u_1 \\
v_1 \end{pmatrix}, \quad \text{oder}
\)

\(S^{-1} (u_1) = \begin{pmatrix}
- u_1 + v_1 \\
2u_1 - 2v_1
\end{pmatrix} = DS^{-1} \begin{pmatrix} u_1 \\
v_1 \end{pmatrix} =
\]

\[= \begin{pmatrix} -1 & 0 \\
0 & 2 \end{pmatrix} \begin{pmatrix}
- u_1 + v_1 \\
2u_1 - 2v_1
\end{pmatrix} =
\]

\[S \begin{pmatrix} u_1 \\
v_1 \end{pmatrix} = \begin{pmatrix} - u_1 + v_1 \\
2u_1 - 2v_1 \end{pmatrix}.
\]

\(\text{Schaue} \quad \vec{u} = - u + v, \quad \vec{v} = 2u - 2v.
\)

\(\text{Also} \quad \begin{pmatrix} \vec{u} \\
\vec{v} \end{pmatrix} = S^{-1} \begin{pmatrix} u \\
v \end{pmatrix} = S \begin{pmatrix} \vec{v} \end{pmatrix} = \begin{pmatrix}
\frac{\vec{u}}{2} + \vec{v} \\
\frac{\vec{u}}{2} + \frac{\vec{v}}{2}
\end{pmatrix}.
\)
Da gilt:  \[
\begin{pmatrix}
\xi_1 \\
\xi_2
\end{pmatrix} = \begin{pmatrix}
-\lambda & 0 \\
0 & 2
\end{pmatrix} \begin{pmatrix}
\xi_1 \\
\xi_2
\end{pmatrix}.
\]

Also:  
\[\xi_1(x) = -\tilde{u}(x) \quad \Rightarrow \quad \tilde{u}(x) = A \cdot e^{\lambda x};\]
\[\xi_2(x) = 2\tilde{u}(x) \quad \Rightarrow \quad \tilde{v}(x) = B \cdot e^{\lambda x};\]

somit sind:
\[u(x) = 2A \cdot e^{\lambda x} + B \cdot e^{2\lambda x};\]
\[v(x) = 3A \cdot e^{\lambda x} + B \cdot e^{2\lambda x};\]

mit \(A, B \in \mathbb{R}\) Lösung des Systems.
\[ a) \quad \det (A - \lambda E) = \det \begin{pmatrix} 22 - \lambda & -2 & -4 \\ 4 & 16 - \lambda & -4 \\ 2 & -1 & 16 - \lambda \end{pmatrix} = (18 - \lambda) \begin{pmatrix} 20 - \lambda & -4 \\ 1 & 16 - \lambda \end{pmatrix} \]

\[ = (18 - \lambda) (324 - 76\lambda + \lambda^2) = (18 - \lambda)^2 \neq 0 \]

Daran ist \( \lambda = 18 \) der erste Eigenwert.

**Bestimmung der unendlichen Eigenräume.**

Löse \( (A - 18 \cdot E) \vec{x} = \vec{0} \):

\[ \begin{pmatrix} 4 & -2 & -4 \\ 4 & -2 & -4 \\ 2 & -1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 & -1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]

Also \( \vec{x} = s \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \end{pmatrix} \) (\( s, t \in \mathbb{R} \))

\( E(18) = \left\{ \vec{x} : \vec{x} = s \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} \)

\( A \) ist nicht die gleichrichter, da \( A \) nur zwei linear unabhängige Eigenvektoren hat.
b) \[ \det (B - \lambda E) = \det \begin{pmatrix} 1-\lambda & 1 & 0 \\ 2 & -\lambda & 2 \\ -\lambda & 0 & -\lambda \end{pmatrix} \]

\[ = (\lambda - \lambda) \det \begin{pmatrix} -\lambda & 1 \\ 0 & -\lambda \end{pmatrix} - \lambda \det \begin{pmatrix} 2 & 2 \\ -\lambda & -\lambda \end{pmatrix} \]

\[ = (\lambda - \lambda) \lambda^2 - (2\lambda + 2) \]

\[ = (\lambda - \lambda) (\lambda^2 - 2) = (\lambda - \lambda) (\lambda + \sqrt{2}) (\lambda - \sqrt{2}) = 0 \]

Eigenwerte sind \( \lambda_1 = 1 \), \( \lambda_2 = \sqrt{2} \), \( \lambda_3 = -\sqrt{2} \).

Eigenraum zu \( \lambda_1 = (A - \lambda E)x = 0 \):

\[
\begin{align*}
\begin{bmatrix} 0 & 1 & 0 \\ 2 & -\lambda & 2 \\ -\lambda & 0 & -\lambda \end{bmatrix} & \rightarrow \\
\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\end{align*}
\]

\[ E(\lambda) = \{ x \in \mathbb{R}^3 : \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \text{ oder } \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ oder } \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \} \]

Eigenraum zu \( \lambda_2 = \sqrt{2} \):

\[
\begin{align*}
\begin{bmatrix} 1-\sqrt{2} & 1 & 0 \\ 2 & -\sqrt{2} & 2 \\ -\lambda & 0 & -\sqrt{2} \end{bmatrix} & \rightarrow \\
\begin{bmatrix} 1 & 0 & \sqrt{2} \\ 2 & -\sqrt{2} & 2 \\ \lambda - \sqrt{2} & 1 & 0 \end{bmatrix}
\end{align*}
\]

\[ E(\lambda) = \{ \begin{pmatrix} -1 \\ 2 \end{pmatrix} : x = s \begin{pmatrix} -1 \\ 1 \end{pmatrix} \} \]

Eigenraum zu \( \lambda_3 = -\sqrt{2} \):

\[
\begin{align*}
\begin{bmatrix} 1+\sqrt{2} & 1 & 0 \\ 2 & -\sqrt{2} & 2 \\ -\lambda & 0 & -\sqrt{2} \end{bmatrix} & \rightarrow \\
\begin{bmatrix} 1 & 0 & -\sqrt{2} \\ 2 & -\sqrt{2} & 2 \\ \lambda + \sqrt{2} & 1 & 0 \end{bmatrix}
\end{align*}
\]

\[ E(\lambda) = \{ \begin{pmatrix} -1 \\ 2 \end{pmatrix} : x = s \begin{pmatrix} -1 \\ 2 \end{pmatrix} \} \]
$$\lambda_1 = -\sqrt{2}; \quad (A + \sqrt{2}E) \mathbf{x} = \mathbf{0}.$$ 

$$\begin{pmatrix} 1 + \sqrt{2} & 1 & 0 \\ 2 & \sqrt{2} & 2 \\ -1 & 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & -\sqrt{2} \\ 0 & \sqrt{2} & 2 + \sqrt{2} \\ 1 + \sqrt{2} & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & -\sqrt{2} \\ 0 & 1 & \sqrt{2} + 2 \\ 0 & 1 & \sqrt{2} + 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & -\sqrt{2} \\ 0 & 1 & \sqrt{2} + 2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$E(-\sqrt{2}) = \{ \mathbf{x} \in \mathbb{R}^2 \mid \mathbf{x} = z \begin{pmatrix} \sqrt{2} \\ -\sqrt{2} \\ 1 \end{pmatrix} \mid z \in \mathbb{R} \}.$$ 

Die Matrix $B$ ist diagonalisierbar, der $\mathbb{E}$ besteht aus einer unschwingenden Eigenvektor.
6)

a) Wir berechnen die Determinante von \((A-\lambda E)\):

\[
\begin{vmatrix}
3-\lambda & 1 & -1 & 1 \\
1 & 3-\lambda & 1 & -1 \\
-1 & 1 & 3-\lambda & 1 \\
1 & -1 & 1 & 3-\lambda
\end{vmatrix} = 0
\]

\[
\begin{vmatrix}
3-\lambda & 1 & -1 & 1 \\
1 & 3-\lambda & 1 & -1 \\
0 & 4-\lambda & 4-\lambda & 0 \\
0 & 1-4 & 0 & 4-\lambda
\end{vmatrix} = \begin{vmatrix}
3-\lambda & 2 & -1 & 1 \\
1 & 2-\lambda & 1 & -1 \\
0 & 4-\lambda & 4-\lambda & 0 \\
0 & 0 & 0 & 4-\lambda
\end{vmatrix}
\]

\[
(4-\lambda) \begin{vmatrix}
3-\lambda & 2 & -1 \\
1 & 2-\lambda & 1 \\
0 & 4-\lambda & 4-\lambda
\end{vmatrix} = (4-\lambda) \begin{vmatrix}
3-\lambda & 3 & -1 \\
1 & 1-\lambda & 1 \\
0 & 0 & 4-\lambda
\end{vmatrix}
\]

\[
(4-\lambda)^2 \begin{vmatrix}
3-\lambda & 3 \\
1 & 1-\lambda
\end{vmatrix} = (4-\lambda)^2 \left[ (3-\lambda)(1-\lambda) - 3 \right]
\]

\[
(4-\lambda)^2 (\lambda^2 - 4\lambda) = (\lambda - 4)^2 \lambda.
\]

Die Matrix \(A\) hat zwei Eigenwerte, nämlich \(\lambda_1 = 0\) (mit algebraischer Vielfachheit 1) und \(\lambda_2 = 4\) (mit algebraischer Vielfachheit 3).

b) Wir bestimmen die Eigenvektoren:

Für \(\lambda = 0\) müssen wir das Gleichungssystem \((A-0E)x = 0\)

oder \(Ax = 0\) lösen:

\[
\begin{vmatrix}
3 & 1 & -1 & 1 \\
1 & 3 & 1 & -1 \\
-1 & 1 & 3 & 1 \\
1 & -1 & 1 & 3
\end{vmatrix} \begin{vmatrix}
1 & 3 & 1 & -1 \\
0 & -8 & -4 & 4 \\
0 & 4 & 4 & 0 \\
0 & -4 & 0 & 4
\end{vmatrix}
\]
\[ \begin{pmatrix} 1 & 3 & 1 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \]

\[ E(2) = \{ x \in \mathbb{R}^4 : \lambda_1^2 + \lambda_2 = 4 \} \]

\[ A - 4E = \begin{pmatrix} -1 & 1 & -1 & 1 \\ 1 & -1 & -1 & 1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \end{pmatrix} \]

Alle Zahlen sind Vielfache gewesen, es bleibt also nur eine Gleichung übrig.

Es folgt

\[ E(4) = \{ x \in \mathbb{R}^4 : x = \lambda \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \delta \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \} \]

Die Vektoren \( e_1, e_2, e_3, e_4 \) sind linear unabhängig, also löst

\[ C := \begin{pmatrix} e_1 & e_2 & e_3 & e_4 \end{pmatrix} \] den Gleichungssystem:

\[ C^T A C = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]
7. A ist diagonalisierbar, d.h. Für jede Eigenwurzel gilt:

\[ \text{algebr. Vielfachheit} = \text{geom. Vielfachheit} \]

(Dabei lautet die algebraische Vielfachheit aus dem charakteristischen Polynom ab; die geometrische Vielfachheit ist die Dimension des zugehörigen Eigenraums.)

Es ist \( \det (A - \lambda E) = \det \begin{pmatrix} -\lambda & -\alpha & 0 & 0 \\ 0 & \alpha - \lambda & 0 & 0 \\ 2 & 1 & \alpha - \lambda & 2 \\ 0 & 2 & 0 & -\lambda \end{pmatrix} \)

\[ = (\alpha - \lambda) \det \begin{pmatrix} -\lambda & 0 & 0 \\ 2 & \alpha - \lambda & 2 \\ 0 & 0 & -\lambda \end{pmatrix} \]

\[ = (\alpha - \lambda)(-\lambda) \det \begin{pmatrix} \alpha - \lambda & 2 \\ 0 & -\lambda \end{pmatrix} = (\lambda - \alpha)^2 \lambda^2. \]

\text{Falle 1: } \alpha = 0; \text{ } \lambda = 0 \text{ ist Eigenwert in algebr. Vielfachheit } 4\]

Berechnung des Eigenraums \( E(0) \): \( (A - \lambda E) \mathbf{x} = \mathbf{0} \)

\[ \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 2 \\ 0 & 2 & 0 & 0 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \]

\[ E(0) = \{ \mathbf{x} : \mathbf{x} = s \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \mid s, t \in \mathbb{R} \} \]

Also die \( E(0) \) hat 4 Freiheitsgrade, und wegen \( \lambda = 0 \) ist \( A \) für \( \alpha = 0 \) nicht diagonalisierbar.

\text{Falle 2: } \alpha \neq 0; \quad \lambda_1 = 0 \text{ ist Eigenwurzel der algebraischen Vielfachheit.}

\[ \lambda_2 = \alpha \]
$$v_1 = \text{rang} \left( A - \alpha E \right) = \text{rang} \left( \begin{array}{cccc}
0 & -\alpha & 0 & 0 \\
0 & 0 & 0 & 0 \\
2 & 1 & 0 & 2 \\
0 & 2 & 0 & -\alpha 
\end{array} \right) = 2$$

Also \( \text{dim} \ E(0) = 4 - 2 = 2 \).

$$v_2 = \text{rang} \left( A - \alpha E \right) = \text{rang} \left( \begin{array}{cccc}
-\alpha & -\alpha & 0 & 0 \\
0 & 0 & 0 & 0 \\
2 & -1 & 0 & 2 \\
0 & 2 & 0 & -\alpha 
\end{array} \right)$$

$$= \text{rang} \left( \begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 4 - \alpha 
\end{array} \right)$$

$$= \begin{cases} 
3 & \text{for } \alpha \neq 4 \\
2 & \text{for } \alpha = 4 
\end{cases}$$

Also \( \text{dim} \ E(\alpha) = \begin{cases} 
4 & \text{for } \alpha \neq 4 \\
2 & \text{for } \alpha = 4 
\end{cases} \)

Insgesamt: \( A \) ist nur in Folge \( \alpha = 4 \) diagonalisierbar.