Lösungen zum 7. Übungsblatt
Höhere Mathematik I für die Fachrichtungen
Elektroingenieurwesen, Physik und Geodäsie

Lösung zu Aufgabe H1

(a) Es ist für \(|q| < 1 \):
\[
1 + q + \ldots + q^n = \frac{1 - q^{n+1}}{1 - q} \quad \text{und} \quad 1 + q^2 + \ldots + q^{2n} = \frac{1 - q^{2(n+1)}}{1 - q^2}.
\]
Damit erhalten wir
\[
a_n = \frac{(1 - q^{n+1})(1 - q^2)}{(1 - q)(1 - q^{2n+1})} = \frac{1 + q}{1 + q^{n+1}}.
\]
Wegen \(|q| < 1 \) gilt dann
\[
\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1 + q}{1 + q^{n+1}} = 1 + q.
\]

(b) Zuerst berechnen wir die ersten Folgenglieder um eine Vermutung zu bekommen, wie sich die Folge verhält. Wir erhalten \(a_1 = 3, \ a_2 = \sqrt{15}, \ a_3 = \sqrt{15 + 12}, \ldots \).
Wir sehen, daß die ersten Folgenglieder alle kleiner als 4 sind. Also behaupten wir \(a_n < 4 \) für alle \(n \in \mathbb{N} \). Diese Behauptung beweisen wir mit vollständiger Induktion.

(i) **Induktionsschritt:** Da wir die Glieder \(a_1, \ a_2, \ a_3 \) schon explizit berechnet haben ist dieser Schritt schon erledigt.

(ii) **Induktionsvoraussetzung:** Für ein \(n \geq 1 \) gelte \(a_n > 4 \)

(iii) **Induktionsschluß:** \(n \to n + 1 \). Nach der Definition von \(a_n \) und der Behauptung \(a_n < 4 \) erhalten wir
\[
a_{n+1} = \sqrt{a_n + 12} < \sqrt{4 + 12} = \sqrt{16} = 4.
\]

Damit ist gezeigt, daß die Folge durch 4 nach oben beschränkt ist. Weiter stellen wir die Behauptung auf, daß die Folge monoton wächst, also gilt \(a_{n+1} > a_n \). Wegen \(0 < a_n < 4 \) erhalten wir \(3a_n < 12 \) und \(a_n^2 < 4a_n \). Daraus folgt dann
\[
a_{n+1} = \sqrt{a_n + 12} > \sqrt{a_n + 3a_n} = \sqrt{4a_n} > \sqrt{a_n^2} = |a_n| = a_n.
\]
Jetzt müssen wir nur noch den Grenzwert a ausrechnen. Wir behaupten $a = 4$ und betrachten dazu die Folge $a_{n+1} - \sqrt{a_n + 12}$, deren Folgenglieder alle identisch verschwinden. Es gilt also

$$0 = \lim_{n \to \infty} (a_{n+1} - \sqrt{a_n + 12}) = \lim_{n \to \infty} a_{n+1} - \sqrt{\lim_{n \to \infty} a_n + 12} = a - \sqrt{a + 12} \quad (5)$$

bzw.

$$a^2 = a + 12 \Rightarrow a = \left\{ \begin{array}{l} -3 \\ 4 \end{array} \right. \quad (6)$$

Da aber $a = -3$ die Gleichung (5) nicht erfüllt gilt $a = 4$.

(c) Die Folge a_n ist eine Nullfolge, denn $a_n = \sqrt{n + 1} - \sqrt{n} = \frac{1}{\sqrt{n + 1} + \sqrt{n}} \to 0$.

Damit haben wir

$$G' = \lim_{n \to \infty} \sqrt{n} \left(1 - \sqrt{1 - \sin(\sqrt{n + 1} - \sqrt{n})} \right)$$

$$= \lim_{n \to \infty} \sqrt{n} \left(1 - \sqrt{1 - \sin(a_n)} \right)$$

$$= \lim_{n \to \infty} \sqrt{n} \frac{\sin(a_n)}{1 + \sqrt{1 - \sin(a_n)}}$$

$$= \lim_{n \to \infty} \sqrt{n} \frac{a_n}{1 + \sqrt{1 - \sin(a_n)}} \left(\frac{a_n}{1 + \sqrt{1 - \sin(a_n)}} \right)^{-1}$$

$$= \lim_{n \to \infty} \sqrt{n} \frac{\sqrt{n + 1} - \sqrt{n}}{1 + \sqrt{1 - \sin(a_n)} \sqrt{n + 1} + \sqrt{n}}$$

$$= \lim_{n \to \infty} \sqrt{n} \frac{1}{1 + \sqrt{1 - \sin(a_n)} \sqrt{n + 1} + \sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{1}{1 + \sqrt{1 - \sin(a_n)} \sqrt{n + 1} + \sqrt{n}} \left(\frac{1}{1 + \frac{1}{n + 1}} \right)^{-2}$$

$$= \frac{1}{4} \quad (7)$$

Lösung zu Aufgabe H2

(a) Setzen wir $z = x + iy$ und $c = a + ib$ in $z_{n+1} = \frac{z_n^2}{c} + c$ ein, so erhalten wir

$$z_{n+1} = x_{n+1} + iy_{n+1} = (x_n + iy_n)^2 + a + ib = x_n^2 + 2ix_ny_n - y_n^2 + a + ib \quad (8)$$

und somit

$$x_{n+1} = Re z_{n+1} = x_n^2 - y_n^2 + a \quad (9)$$

$$y_{n+1} = Im z_{n+1} = 2x_ny_n + b \quad (10)$$

(b) (i) Wir schreiben $z_{n+1} = \frac{z_n^2}{c}$ in Polarkoordinaten um und erhalten

$$r_{n+1} (\cos(\varphi_{n+1}) + i \sin(\varphi_{n+1})) = r_n^2 (\cos(2\varphi_n) + i \sin(2\varphi_n)) \quad (11)$$
Vergleich von Betrag und Argument ergibt

\[r_{n+1} = r_n^2, \ \varphi_{n+1} = 2\varphi_n. \quad (12) \]

Wenn wir jetzt \(r_n < 1 \) wählen, dann ist auch \(r_n^2 < 1 \) und somit ist die Folge konvergent, d.h. alle Anfangswerte im Innern des Einheitskreises liefern die Konvergenz gegen \((0,0)\). Beachte, das Argument spielt in dieser Überlegung keine Rolle.

(ii) Analog dem Vorgehen in (b) erhalten wir mit \(r_n = 1 \) eine beschränkte Folge, die nicht gegen \((0,0)\) konvergiert.

(c) Mit der folgenden Maple-Routine kann die Mandelbrotmenge bzw. das Äpfelmännchen erzeugt werden:

\begin{verbatim}
> restart: with(plots):
> mandelbrot := proc(x, y)
> local c, z, m;
> c := evalf(x+y*I);
> z := c;
> for m to 30 while abs(z) < 2 do
> z := z^2+c
> od;
> m
> end:
> plot3d(0,-2 .. 0.7, -1.2 .. 1.2, orientation = [-90,0], grid = [250,250], ...
> style = patchnogrid, scaling = constrained, color = mandelbrot);
\end{verbatim}

Lösung zu Aufgabe H3

(a) \[a_n = \frac{3n^2 + \sqrt{n^3 + 2}}{n^2 - n + 1} = \frac{3 + \sqrt{1 + \frac{2}{n^4}}}{1 - \frac{1}{n} + \frac{1}{n^2}} \xrightarrow{n \to \infty} \frac{3}{1} = 3. \quad (13) \]
also:
\[\lim_{n \to \infty} a_n = 3. \]

(14)

(b) \[3 = \sqrt[3]{3^a} \leq a_n = \sqrt[3]{2^n + 3^n} \leq \sqrt[3]{3^3 + 3^3} = \sqrt[3]{2 \cdot 3^3} = 3 \cdot \sqrt[3]{2}, \]

ist
\[3 = \lim_{n \to \infty} 3 \leq \lim_{n \to \infty} a_n \leq \lim_{n \to \infty} 3 \cdot \sqrt[3]{2} = 3 \quad (da \ \lim_{n \to \infty} \sqrt[3]{2} = 1), \]

und nach dem Sandwich-Theorem somit
\[\lim_{n \to \infty} a_n = 3 \]

(16)

(c) Für gerades \(n = 2k \ (k \in \mathbb{N}) \) ist
\[a_n = a_{2k} = \left(1 + \frac{1}{4k}\right)^{6k} = \left(1 + \frac{1}{4k}\right)^{4k} \cdot \frac{4k}{6k} \to e^2, \]

(17)

da \ \lim_{m \to \infty} \left(1 + \frac{1}{m}\right)^m = e.

Für ungerades \(n = 2k - 1 \ (k \in \mathbb{N}) \) ist
\[a_n = a_{2k-1} = \left(1 - \frac{1}{4k-2}\right)^{6k-3} = \left(\frac{4k-3}{4k-2}\right)^{6k-3} \]

\[= \left(\frac{4k-3}{4k-2}\right)^{6k-3} \left(1 + \frac{1}{4k-3}\right)^{\frac{6k-3}{3}} \]

\[\to \left(\frac{1}{e}\right)^{\frac{3}{2}} \cdot 1^{\frac{3}{2}} = e^{-\frac{3}{2}} \ \text{für} \ k \to \infty. \]

(18)

Es ist also
\[\limsup(a_n) = e^2, \]
\[\liminf(a_n) = e^{-\frac{3}{2}}. \]

(19)

Der Grenzwert \(\lim a_n \) existiert nicht.

(d) Um die Häufigkeitspunkte einer rekursiv definierten Folge zu bestimmen, wünschen wir uns die Folge lieber als Funktion \(\mathbb{N} \to \mathbb{R}, \ n \mapsto a_n \). Dazu schreiben wir uns die ersten paar Folgenglieder auf:
\[a_0 = 0, \ a_1 = \frac{1}{1}, \ a_2 = \frac{1}{4}, \ a_3 = \frac{3}{4}, \ a_4 = \frac{3}{8}, \ a_5 = \frac{7}{8}, \ a_6 = \frac{7}{16}, \ a_7 = \frac{15}{16}, \ a_8 = \frac{15}{32}, \ldots \]

und erkennen, dass allgemein
\[a_{2k} = \frac{2^k - 1}{2k+1} \quad \text{und} \quad a_{2k+1} = \frac{2^{k+1} - 1}{2k+1} \]

(20)
für $k = 0, 1, \ldots$ gelten könnte. Mit vollständiger Induktion bestätigen wir dies. Der Induktionsanfang ist schon durchgeführt.

Induktionsschritt: sei für alle $l \leq n$ das Folgglied a_l wie oben beschrieben. Wir haben a_{n+1} zu bestimmen. Ist $n+1 = 2k+1$, so ist $a_{n+1} = \frac{1}{2} + a_{2k} = \frac{1}{2} + \frac{a_{2k} - 1}{2} = \frac{a_{2k+1}}{2}$, und ist $n+1 = 2k$, so ist $a_{n+1} = \frac{1}{2} \cdot a_{2k-1} = \frac{1}{2} \cdot \frac{a_{2k-1} - 1}{2} = \frac{a_{2k}}{2}$, wie gewünscht.

Nun zu den Häufigkeitspunkten. Für gerade $n = 2k$ konvergiert die Teilfolge $a_n = \frac{a_{2k-1}}{2}$ gegen $\frac{1}{2}$. Die Teilfolge mit ungeraden Indizes $a_{2k+1} = \frac{a_{2k+1} - 1}{2} = 1 - \frac{1}{2} - 1$ konvergiert gegen 1. Somit haben wir für unsere Folge die beiden Häufigkeitspunkte $\frac{1}{2}$ und 1.

(e) Wir wissen schon, dass $a_n \to e$ für $n \to \infty$ gilt; wir müssen also nur noch zeigen, dass $([a_n, b_n])$ eine Intervallschachtelung ist. Dies bedeutet: (a_n) wächst monoton, (b_n) fällt monoton, es gilt $a_n \leq b_n$ für alle $n \in \mathbb{N}$ und $b_n - a_n \to 0$ für $n \to \infty$.

(a_n) wächst monoton: Zu zeigen ist $a_n \leq a_{n+1}$, also

\[
\left(1 + \frac{1}{n}\right)^n \leq \left(1 + \frac{1}{n+1}\right)^{n+1} \Leftrightarrow \left(\frac{n+1}{n}\right)^n \leq \left(\frac{n+2}{n+1}\right)^{n+1} \Rightarrow \left(\frac{n+1}{n(n+2)}\right)^n \leq \frac{n+2}{n+1} \Rightarrow \frac{(n(n+2))}{(n+1)^2} \geq 1 - \frac{n}{(n+1)^2}, \quad (21)
\]

Die letzte Ungleichung gilt: Die Bernoullische Ungleichung $(1+x)^n \geq 1+nx$, $x \geq -1$ liefert liefert mit $x = \frac{1}{(n+1)^2}$, nämlich

\[
\left(\frac{n(n+2)}{(n+1)^2}\right)^n = \left(\frac{n^2 + 2n + 1 - 1}{(n+1)^2}\right)^n = \left(1 - \frac{1}{(n+1)^2}\right)^n \geq 1 - \frac{n}{(n+1)^2}, \quad (22)
\]

und wegen $(n+1)^2 = n^2 + 2n + 1 \geq n^2 + 2n = n(n+2)$ folgt

\[
1 - \frac{n}{n(n+2)} = 1 - \frac{1}{n+2} = \frac{n+1}{n+2}, \quad (23)
\]

(b_n) fällt monoton: Wir formen die Aussage $b_n \geq b_{n+1}$ äquivalent um:

\[
\left(1 + \frac{1}{n}\right)^{n+1} \geq \left(1 + \frac{1}{n+1}\right)^{n+2} \Leftrightarrow \left(\frac{n+1}{n}\right)^n \geq \left(\frac{n+2}{n+1}\right)^{n+2} \Leftrightarrow \left(\frac{(n+1)^2}{n(n+2)}\right)^n \leq \frac{n+2}{n+1} \Leftrightarrow \left(1 + \frac{1}{n(n+2)}\right)^{n+1} \geq \frac{n+2}{n+1}, \quad (24)
\]

Um die letzte Ungleichung zu zeigen, verwenden wir wieder die Bernoullische Ungleichung und $(n+1)^2 \geq n(n+2)$:

\[
\left(1 + \frac{1}{n(n+2)}\right)^{n+1} \geq 1 + \frac{n+1}{n(n+2)} \geq 1 + \frac{1}{n+1} = \frac{n+2}{n+1}, \quad (25)
\]

Die Monotonieaussagen sind damit gezeigt. Weiter gilt

\[
b_n - a_n = \left(1 + \frac{1}{n}\right)^{n+1} - \left(1 + \frac{1}{n}\right)^n = \left(1 + \frac{1}{n}\right)^n \left(1 + \frac{1}{n} - 1\right) = \frac{a_n}{n}. \quad (26)
\]
Wegen $a_n \geq 0$ folgt hieraus $b_n - a_n \geq 0$, also $a_n \leq b_n$ und wegen $a_n \to e$ für $n \to \infty$ ergibt sich $b_n - a_n \to 0$ für $n \to \infty$. Damit ist alles gezeigt.

Lösung zu Aufgabe H4

(a) Mit dem Ansatz $x_n = a^n, a \in \mathbb{R} \setminus \{0\}, n \in \mathbb{N}_0$ erhalten wir

$$x_{n+2} = x_{n+1} + x_n \iff a^{n+2} = a^{n+1} + a^n \iff a^n(a^2 - a - 1) = 0$$

$$a_{1,2} = \frac{1}{2} \pm \frac{\sqrt{5}}{2}.$$ \hspace{1cm} (27)

Also die Zahlen $a_1 = \frac{1}{2} + \frac{\sqrt{5}}{2}$ und $a_2 = \frac{1}{2} - \frac{\sqrt{5}}{2}$ erfüllen die Rekursion.

(b) Wir zeigen daß $z_n = c_1x_n + c_2y_n = c_1a_1^n + c_2a_2^n, c_1, c_2 \in \mathbb{R}$ beliebig die Rekursion erfüllen.

$$a_1^{n+2} = a_1^{n+1} + a_1^n$$ \hspace{1cm} (28)

$$a_2^{n+2} = a_2^{n+1} + a_2^n$$ \hspace{1cm} (29)

$$c_1a_1^{n+2} + c_2a_2^{n+2} = c_1(a_1^{n+1} + a_1^n) + c_2(a_2^{n+1} + a_2^n) = c_1a_1^{n+1} + c_2a_2^{n+1} + c_1a_1^n + c_2a_2^n = c_1x_{n+1} + c_2y_{n+1} + c_1x_n + c_2y_n = z_{n+1} + z_n = z_{n+2}$$ \hspace{1cm} (30)

(c) Jetzt müssen wir die Konstanten c_1 und c_2 bestimmen. Wir wissen daβ $x_0 = 1 = x_1$ ist und dann auch $z_0 = z_1 = 1$. Daraus folgt das Gleichungssystem

$$c_1 + c_2 = 1$$ \hspace{1cm} (31)

$$a_1c_1 + a_2c_2 = 1$$ \hspace{1cm} (32)

mit $a_{1,2} = \frac{1}{2} \pm \frac{\sqrt{5}}{2}$. Die Lösung des Gleichungssystems ist dann

$$c_1 = \frac{\sqrt{5} + 1}{2\sqrt{5}} \quad c_2 = \frac{\sqrt{5} - 1}{2\sqrt{5}}.$$ \hspace{1cm} (33)

Weiter bekommen wir

$$z_n = \frac{\sqrt{5} + 1}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2}\right)^n + \frac{\sqrt{5} - 1}{2\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2}\right)^n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2}\right)^{n+1} + \left(\frac{1 - \sqrt{5}}{2}\right)^{n+1}.$$ \hspace{1cm} (34)

(d) Die letzte Gleichung in (c) nennt man **Binetische Formel** und die Zahlen z_n heißen **Fibonacci-Zahlen**.

6