

Mathematical Topics in Kinetic Theory

Exercise Sheet 6

Exercise 10 (Conservation of higher moments for the homogeneous Boltzmann equation with bounded collision kernel)

Assume that $0 \le f_0 \in L^1_{\kappa}(\mathbb{R}^d)$ for some $\kappa \ge 2$ and that *B* satisfies the assumptions

(i)
$$0 \le B\left(|v - v_*|, \frac{v - v_*}{|v - v_*|} \cdot \sigma\right) \le C_B$$
,
(ii) $B(|v - v_*|, \frac{v - v_*}{|v - v_*|} \cdot \sigma) \le K_B(1 + |v|^{\lambda} + |v_*|^{\lambda})$ with $\lambda = \min\{\kappa/2, 2\}$.

Show that the solution of the homogeneous Boltzmann equation constructed in Theorem III.1 satisfies

 $f(t, \cdot) \in L^1_{\kappa}(\mathbb{R}^d) \text{ for all } t \ge 0$

and for all $0 \le t \le T$ we have the estimate

$$\|f(t,\cdot)\|_{L^{1}_{\kappa}} \leq c_{T} \|f_{0}\|_{L^{1}_{\kappa}},$$

where the constant c_T depends only on $||f_0||_{L^1_{\nu}}$, *T*, *K*_{*B*}, and κ .

Exercise 11 (Boltzmann *H* theorem)

Let f be a solution to the homogeneous Boltzmann equation with kernel satisfying

$$0 \le B\left(|v - v_*|, \frac{v - v_*}{|v - v_*|} \cdot \sigma\right) \le C_B$$

and initial datum $0 \le f_0 \in L^1_2(\mathbb{R}^d)$. Assume that, in addition, f has the property that

$$\epsilon_T e^{-C_T |v|^2} \le f(t, v) \le K_T, \quad 0 \le t \le T,$$

for some constants $T, \epsilon_T, C_T, K_T > 0$. Show that for the Boltzmann H functional we have

$$\frac{\mathrm{d}}{\mathrm{d}t}H(f(t,\cdot)) = \frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^d} f(t,v)\log f(t,v)\,\mathrm{d}v \le 0.$$