Exercise 49: Solving the Cauchy problem with complete integrals

In this exercise we will discuss how to solve the Cauchy problem

\[u_x u_y = 1 \quad \text{and} \quad u(0, y) = \log(y) \quad (y > 0) \]

using the complete integral \(u(x, y; a, b) \) calculated in exercise 47.

a) Determine functions \(a(s), b(s) \) such that \((x, y) \mapsto u(x, y; a(s), b(s)) \) solves the initial conditions and the strip condition

\[\frac{d}{ds} \log(s) = Du(0, s, a(s), b(s)) \cdot (0, 1) \]

b) Calculate the envelope \(u^*(x, y) \) of this family of solutions.

c) Check that \(u^* \) is a solution of the above problem.

Exercise 50: First Order PDE V, Nonuniqueness

Consider the problem

\[u_x^2 + u_y^2 = 1 \quad \text{and} \quad u(\cos(\varphi), \sin(\varphi)) = 0 \]

Apply the method of characteristics to determine two solutions of the problem.

Hint: There are two possible choices for the initial data \(P(0) \).

Exercise 51: First Order PDE VI

Solve the problem

\[u_x^3 - u_y = 0 \quad \text{and} \quad u(x, 0) = 2x^{3/2} \quad (x > 0) \]
Exercise 52: Picone’s example

Let \(u \in C^1(B_1(0)) \) a solution of

\[
a(x, y)u_x + b(x, y)u_y = -u \quad \text{in } B_1(0)
\]

and \(a(x, y)x + b(x, y)y > 0 \) on \(\partial B_1(0) \). In the following we write \(u(r, \varphi) \) using polar coordinates.

a) Prove that if \(u \) attains its maximum in \(x_0 \in \partial B_1(0) \) then \(\frac{\partial u}{\partial r}(x_0) \geq 0 \) and \(\frac{\partial u}{\partial \varphi}(x_0) = 0 \). What (in)equalities do we obtain for a minimum?

b) Use a) to show \(\max_{B_1(0)} u \leq 0 \) as well as \(\min_{B_1(0)} u \geq 0 \), i.e. \(u \equiv 0 \).

c) Solve the above problem explicitly for \(a(x, y) = x, b(x, y) = cy \) with initial conditions \(u(1, \varphi) = f(\varphi) \) for \(c = 0 \) and \(c = 1 \) for a given function \(f \in C^1([0, 2\pi]) \).