Karlsruhe Institute for Technology (KIT) Institute for Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Partial Differential Equations

Exercise Sheet 12

Exercise 1

Show that Theorem VI.4 fails to be true if one replaces $C^{0,\beta}_{\text{loc}}(\mathbb{R}^n)$ by $C^{0,\beta}(\mathbb{R}^n)$.

Exercise 2

For a function $u \in L^1_{\text{loc}}(\mathbb{R}^n)$, we define

$$[u]_{BMO(\mathbb{R}^n)} := \sup_{x \in \mathbb{R}^n, r > 0} \omega_1(u, x, r) = \sup_{x \in \mathbb{R}^n, r > 0} \oint_{B_r(x)} |u(y) - u_{x, r}| \, dy.$$

If $[u]_{BMO(\mathbb{R}^n)} < \infty$, we say that u lies in the space of functions of bounded mean oscillation $BMO(\mathbb{R}^n)$.

Show the following:

- a) If $[u]_{BMO(\mathbb{R}^n)} = 0$, then u is a.e. equal to a constant.
- b) $L^{\infty}(\mathbb{R}^n)$ is contained in BMO(\mathbb{R}^n) and $[u]_{\text{BMO}(\mathbb{R}^n)} \leq 2 ||u||_{L^{\infty}}$.
- c) Suppose that there exists an A > 0 such that for all balls B in \mathbb{R}^n there exists a constant c_B such that

$$\sup_{B} \oint_{B} |u(y) - c_{B}| \, dy \le A.$$

Then $u \in BMO(\mathbb{R}^n)$ and $[u]_{BMO(\mathbb{R}^n)} \leq 2A$.

d) For all u locally integrable we have

$$\frac{1}{2}[u]_{\mathrm{BMO}(\mathbb{R}^n)} \le \sup_{x \in \mathbb{R}^n, \, r > 0} \left(\inf_{c \in \mathbb{R}} \oint_{B_r(x)} |u(y) - c| \, dy \right) \le [u]_{\mathrm{BMO}(\mathbb{R}^n)}.$$

- e) Show that the function $u(x) = \log |x|$ is in BMO(\mathbb{R}^n) but not in $L^{\infty}(\mathbb{R}^n)$.
- f) Let $u \in W^{1,n}(\mathbb{R}^n) \cap L^1(\mathbb{R}^n)$. Show that $u \in BMO(\mathbb{R}^n)$ by proving the inequality

$$\oint_{B_r(x)} |u(y) - u_{x,r}| \, dy \le C \left(\int_{\mathbb{R}^n} |Du|^n \, dy \right)^{\frac{1}{n}}$$

WS 2013/2014 23.01.2014

Exercise 3

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with Lipschitz boundary and let $p \in [1, \infty)$. Show by contradiction the following version of the Poincaré inequality: There exists a constant $C = C(p, \Omega) < \infty$ such that

$$||u||_{L^p(\Omega)} \le C ||Du||_{L^p(\Omega)}$$
 for all $u \in W^{1,p}(\Omega)$ with $\int_{\Omega} u(x) dx = 0.$