Please hand in your solutions until Wednesday, February 1, 2006, 1:00 pm.

Exercise 41 (C)
Let X, Y be Banach spaces. Moreover let $A : X \to Y$ be linear, $A \neq 0$, $N(A)$ closed in X, $A(X)$ closed in Y and let the minimal modulus $\gamma(A)$ be positive. Show that:

- a) A is continuous.
- b) If in addition A is injective, then $\gamma(A) = \|A^{-1}\|^{-1}$.

Hints: Canonical injection, inverse mapping theorem.

Exercise 42 (C)

a) Let V be a vector space over a field K. Moreover let $\varphi_1, \ldots, \varphi_n : V \to K$ be linear functionals, which are linearly independent. Show that the subspace $U := \bigcap_{k=1}^n N(\varphi_k)$ has codimension n.

b) Let X be a normed space, $\dim X = \infty$. Show that there exists a subspace U of X, such that $\text{codim } U = 1$ and U is not closed.

Definition: Let X be a normed space. A set Φ of linear functionals on X is said to be **total** if from $\varphi(x) = 0$ for all $\varphi \in \Phi$ it follows that $x = 0$.

Exercise 43

a) Let N be a countably infinite set. Show that there exists an uncountable index set J and there exist subsets $U_\alpha \subseteq N$ ($\alpha \in J$), such that

- (i) $\text{card}(U_\alpha) = \infty$ ($\alpha \in J$) and
- (ii) $\text{card}(U_\alpha \cap U_\beta) < \infty$ ($\alpha, \beta \in J, \alpha \neq \beta$).

b) Prove: No total subset of $(l^\infty/c_0)'$ is countable.

Hints: In b) choose $N = \mathbb{N}$, J and $(U_\alpha)_{\alpha \in J}$ as in a). Then set $f_\alpha = \chi_{U_\alpha}$, where χ_{U_α} (considered as element of l^∞) denotes the characteristic function of U_α. Use also exercise 24 a).

- please turn over -
Exercise 44

a) Show that c_0 is proximinal in l^∞, that means that to each $(x_n) \in l^\infty/c_0$ there exists $(z_n) \in c_0$ such that

$$ \|(x_n)\| = \inf_{(y_n) \in c_0} \|(x_n) - (y_n)\| = \|(x_n) - (z_n)\| $$

b) Show that c_0 is not a complementable subspace of l^∞.

Hint: For a) use exercise 24 a), for b) exercise 43 and theorem 14.8 of the lecture course.

Theorem 14.8: Let X, Y be Banach spaces and $A \in L(X, Y)$. Then A is bijective if and only if A' is bijective.