Please hand in your solutions until Wednesday, February 8, 2006, 1:00 pm.

Exercise 45
Let X, Y be normed spaces, $X \neq \{0\}$. Moreover let $\Phi : L(X, Y) \to L(Y', X')$ be defined by $\Phi(A) = A'$. Show that: Φ is surjective if and only if Y is reflexive, and in this case Φ is an isometric isomorphism.

Exercise 46 (C)
Let $1 < p < \infty$. Prove the following assertions:

a) A sequence $(x^{(n)})$ in l^p converges weakly to $x \in l^p$ if and only if $(x^{(n)})$ is bounded (with respect to $\| \cdot \|_p$) and converges to x coordinatewise.

b) There exists a weakly convergent sequence in l^p, which is not norm-convergent.

c) There exists a coordinatewise convergent sequence in l^p, which is not weakly convergent.

Hint: Banach-Steinhaus in a).

Exercise 47

a) Let X be a Banach space and M be a subset of X'. Show that M is bounded if and only if $\{ \varphi(x) : \varphi \in M \}$ is bounded for all $x \in X$.

b) Let X, Y be Banach spaces and let (x_n) be a sequence in X, which is weakly convergent to $x \in X$. Show that:

(i) If $T \in L(X, Y)$, then (Tx_n) converges weakly to Tx in Y.

(ii) If $K \in L(X, Y)$ is compact, then $\lim_{n \to \infty} \|Kx_n - Kx\| = 0$.

- please turn over -
Exercise 48 (C)
Prove the following assertions:

a) The spaces l^p are reflexive for $1 < p < \infty$.

b) c_0, l^1 and l^∞ are not reflexive.

c) The spaces c_0 and l^p for $1 \leq p < \infty$ are separable.

d) l^∞ is not separable.

Hints: For b) show first that c_0 is not reflexive. For d) show that there exists an uncountable subset M of l^∞ such that

$$\forall x, y \in M, \ x \neq y \ : \ |x - y|_\infty = 1.$$ \hfill (1)

Then by means of (1) try to prove via contradiction.