Home | english | Impressum | Sitemap | Intranet | KIT
Arbeitsgruppe Angewandte Analysis

Sekretariat
Kollegiengebäude Mathematik (20.30)
Zimmer 2.029

Adresse
Englerstraße 2
76131 Karlsruhe

Dr. Kaori Nagato-Plum
kaori.nagatou@kit.edu


HM I, II, III: für Studierende der Physik, Elektrotechnik
Übungsscheine für HM: für die Studierende der Physik
Numerische Methoden (ETIT)
zusätzlich: studienbegleitende Klausuren zu den Vorlesungen der Dozenten der Arbeitsgruppe.




Öffnungszeiten:
Mo -- Fr 10:00-12:00

Tel.: 0721 608-42056

Fax.: 0721 608-446214

Dr. Birgit Schörkhuber

Sprechstunde: nach Vereinbarung
Zimmer: 2.023 Kollegiengebäude Mathematik (20.30)
Tel.: 0721 608 46197
Email: birgit.schoerkhuber@kit.edu

Englerstraße 2
76131 Karlsruhe





Aktuelles Lehrangebot
Semester Titel Typ
Sommersemester 2018 Seminar
Seminar


Preprints

  • P. Biernat, R. Donninger and B. Schörkhuber. Hyperboloidal similarity coordinates and a globally stable blowup profile for supercritical wave maps. Submitted for publication, 2017

Publications in refereed Journals

  • R. Donninger and B. Schörkhuber. Stable blowup for the supercritical Yang-Mills heat flow. To appear in Journal of Differential Geometry, 2018.
  • P. Biernat, R. Donninger and B. Schörkhuber. Stable self-similar blowup in the supercritical heat flow of harmonic maps. Calc. Var. PDEs, 56:171, 2017.
  • R. Donninger and B. Schörkhuber. Stable blowup for wave equations in odd space dimensions. Ann. Inst. H. Poincare Anal. Non Lineaire, 34:1181-1213, 2017.
  • R. Donninger and B. Schörkhuber. On blowup in supercritical wave equations. Commun. Math. Phys. 346:907, 2016.
  • R. Donninger and B. Schörkhuber. A spectral mapping theorem for perturbed Ornstein-Uhlenbeck operators on L^2(R^d). J. Funct. Anal. 268(9):2479-2524, 2015.
  • R. Donninger and B. Schörkhuber. Stable blow up dynamics for energy supercritical wave equations. Trans. Amer. Math. Soc. 366, No. 4, p. 2167-2189, 2014.
  • B. Schörkhuber, T. Meurer and A. Jüngel. Flatness of semilinear parabolic PDEs - A generalized Cauchy-Kowalevski approach. IEEE Trans. Autom. Control, Vol. 58, No. 9, p. 2277-2291, 2013.
  • B. Schörkhuber, T. Meurer and A. Jüngel. Flatness-based trajectory planning for semilinear parabolic PDEs. 51st IEEE Conf. on Decision and Control, p. 3538 - 3543, 2012.
  • R. Donninger and B. Schörkhuber. Stable self-similar blow up for energy subcritical wave equations. Dynamics of PDE, Vol. 9, No. 1, p. 63-87, 2012.
  • R. Donninger, B. Schörkhuber and P.C. Aichelburg. On stable self-similar blow up for equivariant wave maps - The linearized problem. Ann. H.i Poincare, Vol. 13, No. 1, p. 103-144, 2012.