Home | english  |  Impressum  |  Datenschutz  |  Sitemap  |  Intranet  |  KIT
Arbeitsgruppe Nichtlineare Partielle Differentialgleichungen

Sekretariat
Kollegiengebäude Mathematik (20.30)
Zimmer 3.029

Adresse
Karlsruher Institut für Technologie
Institut für Analysis
Englerstraße 2
76131 Karlsruhe

marion.ewald@kit.edu

Zuständigkeiten:

Analysis I, II, III: für Studierende der Mathematik, Lehramt Mathematik, Physik, Informatik, Ingenieurpädagogik, Schülerstudenten

HM I, II: für Studierende der Informatik

sowie studienbegleitende Klausuren zu den Vorlesungen der Dozenten der Arbeitsgruppe.




Öffnungszeiten:
Mo-Fr: 10-12, Di+Do: 14-16

Tel.: 0721 608 42064

Fax.: 0721 608 46530

Nonlinear Maxwell equations — a variational approach (Sommersemester 2018)

Dozent: Dr. Jaroslaw Mederski (Visiting.Professor)
Veranstaltungen: Vorlesung (0154620)
Semesterwochenstunden: 2


Termine
Vorlesung: Mittwoch 11:30-13:00 Room 3.060 Build. 20.30 Beginn: 9.5.2018
Donnerstag 9:45-11:15 Room 3.060 Build. 20.30
Please note the exact dates below!

Lecture dates:

WED May 9, 11:30-13:00
WED May 16, 11:30-13:00
THU May 24, 9:45-11:15
WED May 30, 11:30-13:00
WED June 6, 11:30-13:00
THU June 7, 9:45-11:15
WED June 13, 11:30-13:00
THU June 14, 9:45-11:15
WED June 20, 11:30-13:00
WED July 11, 11:30-13:00



All lectures will take place in room 3.060 (Build. 20.30).



Description of the lectures


Plan of the lectures

  • Nonlinear Dirichlet problem on a bounded domain. Mountain Pass Theorem and Nehari manifold approach.
  • General conditions imposed on the nonlinear term. Mountain Pass Theorem vs. Nehari manifold approach.
  • Functional and variational setting for the curl-curl equation on a bounded domain.
  • The role of the cylindrical symmetry in the curl-curl problems.
  • Generalized Nehari manifold approach for strongly indefinite problems. Critical point theory I.
  • Generalized Nehari manifold approach for strongly indefinite problems. Critical point theory II.
  • Ground state solutions and the multiplicity of bound state solutions.
  • Curl-curl equations in $\R^3$ and the lack of compactness.
  • Recent results and the list of open problems.



Lecture Notes, June 20, 2018
The lecture notes will be updated.



Prüfung

There will be no examinations.