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Abstract. In an American Mathematical Society Memoir, to appear in 2003,

the authors Everitt and Markus apply their prior theory of symplectic alge-
bra to the study of symmetric linear partial differential expressions, and the

generation of self-adjoint differential operators in Sobolev Hilbert spaces. In

the case when the differential expression has smooth coefficients on the clo-
sure of a bounded open region, in Euclidean space, and when the region has a

smooth boundary, this theory leads to the construction of certain self-adjoint

partial differential operators which cannot be defined by applying classical or
generalized conditions on the boundary of the open region.

This present paper concerns the spectral properties of one of these unusual

self-adjoint operators, sometimes called the “Harmonic” operator.
The boundary value problems considered in the Memoir, see above, and in

this paper are called regular in that the cofficients of the differential expres-
sion do not have singularities within nor on the boundary of the region; also

the region is bounded and has a smooth boundary. Under these and some

additional technical conditions it is shown in the Memoir, and emphasized in
this present paper, that all the self-adjoint operators considered are explic-

itly determined on their domains by the partial differential expression; this

property makes a remarkable comparison with the case of symmetric ordinary
differential expressions.

In the regular ordinary case the spectrum of all the self-adjoint operators is

discrete in that it consists of a countable number of eigenvalues with no finite
point of accumulation, and each eigenvalue is of finite multiplicity. Thus the

essential spectrum of all these operators is empty.

This spectral property extends to the present partial differential case for
the classical Dirichlet and Neumann operators but not to the Harmonic oper-

ator. It is shown in this paper that the Harmonic operator has an eigenvalue
of infinite multiplicity at the origin of the complex spectral plane; thus the

essential spectrum of this operator is not empty.

Both the weak and strong formulations of the Harmonic boundary value
problem, are considered; these two formulations are shown to be equivalent.

In the final section of the paper examples are considered which show that

the Harmonic operator, defined by the methods of symplectic algebra, has a
domain that cannot be determined by applying either classical or generalized

local conditions on the boundary of the region.
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1. Introduction

In the Memoir [8] there is exposed and developed a new general theory of bound-
ary value problems for linear elliptic partial differential operators generated by
elliptic differential expressions, of order 2m (m ≥ 1), in the form,

(1.1) A(x, D) :=
∑

0≤|s|≤2m

as(x)Ds for all x ∈ Ω,

with complex-valued coefficients as(·) ∈ C∞(Ω) for 0 ≤ |s| ≤ 2m, defined on a
bounded region Ω (open connected set) with C∞-smooth boundary ∂Ω in the real
Euclidean space Er (r ≥ 2), and for the corresponding linear operators in the
Hilbert space L2(Ω).

In particular, consider such a linear operator A defined by

(1.2) A : f → A(·, D)f =
∑

0≤|s|≤2m

as(·)Dsf for all f ∈ D(A),

with
A(x, D)f =

∑
0≤|s|≤2m

as(x) (Dsf ) (x) for all x ∈ Ω,

on the classical domain

(1.3) D(A) := C∞0 (Ω).

We use the symbol A(·, D) for the differential expression given by (1.1) which
can be applied using classical derivatives to functions in C2m(Ω), see (1.13), and
using weak derivatives to functions in the Sobolev Hilbert space W 2m(Ω), see (1.9)
and (1.10).

An extension of this operator A to the Sobolev Hilbert space W 2m(Ω), see (1.5)
and (1.6) for instance, is then obtained by using weak derivatives for Ds as usual;

and thence a further extension to the maximal operator T1 on the domain
A

W 2m(Ω),
see (1.20) and (1.26) below. It is a remarkable fact, as demonstrated in [8, Theorem
3.3], that this maximal operator can be expressed in the form T1 : f → A(·, D)f,

for f ∈
A

W 2m(Ω), through this usage of weak derivatives. This result parallels
the theory of ordinary classical and quasi-differential expressions, see [7], and is a
consequence of the assumptions, given above, that the boundary ∂Ω of the bounded
region Ω, and the coefficients of A(·, D) are all smooth. In some other cases of linear
partial differential boundary value problems it is not possible to give such explicit
information about the elements of the domains of the associated operators, nor the
role played by the differential expression.
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The theory expounded in [8] effects the classification of all possible self-adjoint
extensions T of A on domains D(T ) ⊂ L2(Ω), (for A on D(A) in (1.2) and (1.3)),
and then treats the resulting spectral theory by new methods of complex symplectic
algebra (see [7] and [8] for details), under the assumption of the following standing
hypotheses:

Condition 1.1. We state
(a) A(·, D) is uniformly elliptic in the compact domain Ω, and the leading co-

efficients {as : |s| = 2m} are real,
(b) A(·, D) is formally self-adjoint (Lagrange symmetric) so that the operator

A on D(A), in (1.2) and (1.3), is symmetric in L2(Ω),
(c) The Dirichlet boundary value problem for A(·, D) in Ω is well-posed; that

is

(1.4) f ∈W 2m(Ω) ∩
o

Wm(Ω) and A(·, D)f = 0 imply f = 0.

Thus, under the hypotheses (a) and (b) of Condition 1.1 above, the linear map

(1.5) W 2m(Ω) → L2(Ω)×W 2m−1/2(∂Ω)×W 2m−3/2(∂Ω)× · · · ×Wm+1/2(∂Ω)

as given by, using the normal derivatives along the inwards unit normal n to ∂Ω,

(1.6) f →
{
A(·, D)f, f |∂Ω ,

∂f

∂n

∣∣∣∣
∂Ω

, · · · , ∂
m−1f

∂nm−1

∣∣∣∣
∂Ω

}
,

is a bounded Fredholm map of index 0, a statement which requires in particular the
trace theorem; see [1], [8] and [15]. Since the kernel in the mapping (1.5) and (1.6)
is zero, according to the hypothesis (c) of Condition 1.1, see (1.4), this mapping
defines an injective surjection with an inverse which is bounded according to the
open mapping theorem. Hence (1.6) yields a continuous bijection, see (1.23) below
for the definition of the Dirichlet operator TDir,

(1.7) TDir : W 2m(Ω) ∩
o

Wm(Ω) → L2(Ω),

of the Sobolev Hilbert subspace

(1.8) W 2m(Ω) ∩
o

Wm(Ω) ⊂W 2m(Ω)

onto L2(Ω), with a bounded inverse map T−1
Dir.

It is of considerable interest to note that new kinds of domain conditions of a
global, rather than a local, nature are required for the complete results in [8], in
defining self-adjoint operators T on D(T ), as above. Moreover, under such domain
conditions, functions f ∈ D(T ) ⊂ L2(Ω) may well need to be specified without
regard to boundary conditions involving the actual (or pointwise) values of f or its
derivatives on ∂Ω - either in the classical, or weak, or any other customary sense
or interpretation.

In this paper the authors investigate in greater detail the domain of one of these
quite unusual and exotic self-adjoint operators, namely the Harmonic operator THar

onD(THar), as defined and explained later in this section. In particular, in Theorem
2.1 below, the spectrum of THar is analysed in considerable detail.

In this connection the spectral analysis for THar is recast in Section 3 below as a
new kind of eigenvalue problem, and is related to the earlier work on the buckling
elastic plate, see [14, Chapter 9, Sections 62 to 65].
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Following these general investigations, we conclude this paper with a number of
examples for the classical Laplacian A(·, D) = −∆ in an open disk in E2, and also
in an open ball in E3. These explicit examples in Section 4 display unexpected and
spectacular irregularities for the boundary behaviour of functions in D(THar).

Remark 1.2. Regular differential boundary value problems
With the above stated conditions on the smoothness of the coefficients of the

differential expression (1.1), the boundedness of the region Ω and, in particular,
the smoothness of the boundary ∂Ω, together with Condition 1.1, it is reasonable
to regard this partial differential system as regular. The use of this term makes a
good comparison with ordinary classical and quasi-derivative differential systems,
see [7], when the interval of the real line R is compact, and the coefficients of the
ordinary differential expression are all integrable on this interval.

In the case of these regular ordinary boundary value problems the spectrum
of any generated self-adjoint operator is discrete, i.e. consists only of isolated
eigenvalues each of finite multiplicity; thus the essential spectrum of the operator
is empty.

One of the results of this paper is to show that in spite of the smoothness
conditions on the partial differential system given above, which warrant the use of
the term regular, this spectral property of the ordinary differential case does not
extend to the partial differential case. We show below, in Theorem 2.1, that the
self-adjoint operator THar, of (1.27) and (1.28), has a non-empty essential spectrum.

Remark 1.3. Clarification of notation.
While the investigations of this paper are essentially self-contained, and can

be understood independently from the Memoir [8], it is useful to observe that we
employ a familiar and customary notation for the functional analysis of elliptic
partial differential operators - as listed and explained fully in [8, Parts I and II
of Appendix A], and further in the treatise [15]. For instance, we here review
informally that

L2(Ω) :=
{
f : Ω → C : ‖f‖2 =

∫
Ω

|f(x)|2 dx <∞
}
,

is the complex Hilbert space consisting of (equivalence classes) of complex-valued
square-integrable functions in the bounded region Ω (open connected set) in Er,
where C denotes the complex number field, and x = (x1, x2, . . . , xr) are the real
cartesian coordinates and dx indicates the Lebesgue measure of Er. As usual, the
scalar product and norm of the functions f, g ∈ L2(Ω) are denoted by

〈f, g〉 :=
∫

Ω

f(x)g(x)dx and ‖f‖2 := 〈f, f〉 .

Further we use the Sobolev Hilbert spaces, W l(Ω), for each positive integer l ∈ N ≡
{1, 2, 3, . . .},

(1.9) W l(Ω) := {f ∈ L2(Ω) : Dsf ∈ L2(Ω) for all |s| ≤ l}
where Ds := Ds1

1 D
s2
2 · · ·Dsr

r are the weak (or distributional) partial derivatives of
multi-index s = (s1, s2, . . . , sr) and of total order |s| = s1 + s2 + · · · sr ≤ l. Here
the norm and scalar product, for f, g ∈W l(Ω), are given by

(1.10) ‖f‖2l := 〈f, f〉l where 〈f, g〉l :=
∑

0≤|s|≤l

〈Dsf,Dsg〉
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(and conventionally we can set W 0(Ω) = L2(Ω)). Also the intermediate Sobolev
Hilbert spaces Wλ(Ω), defined for all real λ ≥ 0, play a role, see [8, Part I of
Appendix A], in the trace theory (as function spaces on ∂Ω). In particular, as
submanifolds of L2(Ω), the proper inclusions, for 0 < λ1 < λ2, obtain

C∞0 (Ω) ⊂Wλ2(Ω) ⊂Wλ1(Ω) ⊂ L2(Ω),

with C∞0 (Ω) dense in L2(Ω) (and similarly for the corresponding boundary function
spaces on ∂Ω within L2(∂Ω); see [8, Parts I and II of Appendix A] and [15]).

We also denote by
o

W l(Ω) ⊂W l(Ω) the proper Hilbert subspace

(1.11)
o

W l(Ω) :=
{
f ∈W l(Ω) : f |∂Ω = 0,

∂f

∂n

∣∣∣∣
∂Ω

= 0, . . . ,
∂l−1f

∂nl−1

∣∣∣∣
∂Ω

= 0
}

in terms of the normal derivatives along the inwards unit normal n to ∂Ω, as defined
by the trace-map.

Equally we could define (using W l(Ω)-closures)

(1.12) W l(Ω) := C∞(Ω)
W l(Ω)

and
o

W l(Ω) := C∞0 (Ω)
W l(Ω)

.

Here we have used the customary notations of C0(Ω) for continuous complex-
valued functions on Ω, and for each positive integer k

(1.13) Ck(Ω) :=
{
f : Ω → C : f and

∂|s|f

∂xs1
1 · · · ∂xsr

r
∈ C0(Ω) for all |s| ≤ k

}
where in this definition classical partial derivatives are implied.

Further, as usual, we define

(1.14) C∞(Ω) :=
⋂
k≥0

Ck(Ω)

(1.15) C∞(Ω) := {f |Ω : f ∈ C∞(Er)}

(1.16) C∞0 (Ω) := {f ∈ C∞(Ω) : supp(f) is a compact subset of Ω} .

These statements conclude Remark 1.3 on clarification of notation.

Following the theory in [8], based on the Stone-von Neumann theory of symmetric
operators in Hilbert space as given in [6], we consider any self-adjoint operator T
on D(T ) ⊂ L2(Ω), specifically an extension of the operator A, see (1.2) and (1.3),
as generated by the partial differential expression A(·, D) in Ω, see (1.1), with
the standing hypotheses (a), (b), (c) of Condition 1.1 above. The operator T then
necessarily lies between the minimal closed symmetric operator T0, where

(1.17) T0 : f → A(·, D)f =
∑

0≤|s|≤2m

as(·)Dsf on D(T0) =
o

W 2m(Ω) ⊂ L2(Ω)

(T is an extension of T0 to D(T ) ⊃ D(T0)), and the maximal operator (compare
(1.26) below)

(1.18) T1 : f → A(·, D)f on D(T1) ⊂ L2(Ω)

(T is a restriction of T1 to D(T ) ⊂ D(T1)), where T1 is the L2(Ω)-adjoint T ∗0 of T0.
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In prior analysis [8, Section 3, Theorem 3.3], using the hypotheses (a), (b), (c) of
Condition 1.1, it is shown that we can write

(1.19) D(T1) =
A

W 2m(Ω)

where the linear manifold
A

W 2m(Ω) in L2(Ω) is determined by the direct sum

(1.20)
A

W 2m(Ω) := W 2m(Ω) ∩
o

Wm(Ω) u
A

L2(Ω).

Namely,
A

W 2m(Ω) can be expressed as the direct sum of the two submanifolds of
L2(Ω),
(1.21)

W 2m(Ω) ∩
o

Wm(Ω) =
{
f ∈W 2m(Ω) : f |∂Ω = 0,

∂f

∂n

∣∣∣∣
∂Ω

= 0, . . . ,
∂m−1f

∂nm−1

∣∣∣∣
∂Ω

= 0
}

and

(1.22)
A

L2(Ω) := {f ∈ L2(Ω) : f ∈ C∞(Ω) and A(·, D)f = 0 in Ω} .

Remark 1.4. Note that in this definition (1.22) the condition f ∈ C∞(Ω) can be
omitted since it follows from the conditions f ∈ L2(Ω), and A(·, D)f = 0 in Ω in
the distributional sense; see [9, Lecture 5, Theorem 5.1] or [10, Part 1, Chapter 16,
Theorem 16.2 and its Corollary].

Remark 1.5. The operator T1.
A more familiar expression for D(T1), as given in (1.19), is

D(T1) = {f ∈ L2(Ω) : A(·, D)f ∈ L2(Ω)},

where A(·, D)f is understood in the distribution sense; this approach is not used
here but we comment that it is shown in [8] that

A

W 2m(Ω) = span
{
W 2m(Ω),

A

L2(Ω)
}
,

since for each f ∈W 2m(Ω), by hypothesis (c) of Condition 1.1, there exists a unique

function f̂ ∈W 2m(Ω) ∩
A

L2(Ω) such that f − f̂ ∈W 2m(Ω) ∩
o

Wm(Ω).

The linear manifold W 2m(Ω) ∩
o

Wm(Ω) is the familiar space of all functions

f ∈W 2m(Ω) which satisfy the homogeneous Dirichlet conditions on ∂Ω; but
A

L2(Ω)

is relatively unexplored. However, we now remark that
A

L2(Ω) is a closed Hilbert
subspace of L2(Ω) (compare also [8, Lemma 3.1]); for suppose that (fn : n ∈ N) is a

sequence in
A

L2(Ω) which converges to some f in L2(Ω). Then, for any ϕ ∈ C∞0 (Ω)∫
Ω

fnA(·, D)ϕ dx = 0 for all n ∈ N

and hence ∫
Ω

fA(·, D)ϕ dx = 0;

thus f ∈
A

L2(Ω); note Remark 1.4.
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We recall that the familiar Dirichlet operator

(1.23) TDir : f → A(·, D)f for f ∈ D(TDir) := W 2m(Ω) ∩
o

Wm(Ω)

is a self-adjoint extension of T0 on D(T0) in (1.17), with a discrete spectrum for
which each eigenvalue is of finite multiplicity, and the collection of all eigenfunctions
leads to an orthonormal basis for the Hilbert space L2(Ω).

Whilst TDir is the restriction of T1 to the domain D(TDir) ⊂ W 2m(Ω) it is
shown below that the domain D(THar) of the self-adjoint operator THar does not

lie within W 2m(Ω), but only within
A

W 2m(Ω) of (1.20). In order to formulate the
definition of THar in (1.27) and (1.28) below, we first note that each function

f ∈ span
{
W 2m(Ω),

A

L2(Ω)
}
⊂ L2(Ω) has a unique decomposition (according to

Remark 1.5 above)

(1.24) f = fD + fA

with

(1.25) fD ∈W 2m(Ω) ∩
o

Wm(Ω) and fA ∈
A

L2(Ω).

Then, as proved in [8, Theorem 3.3], T1 = T ∗0 can also be given by

T1f = A(·, D)fD for all f ∈ D(T1)

so that Ker(T1) =
A

L2(Ω). As a consequence of this formula for T1 it follows that

T1fA = 0 for all f ∈
A

W 2m(Ω)

and this result is consistent with the fact that A(x, D)fA = 0 for all x ∈ Ω. Since

A(·, D)f = A(·, D)fD for all f ∈
A

W 2m(Ω),

we can write

(1.26) T1f = A(·, D)f =
∑

0≤|s|≤2m

as(·)Dsf for all f ∈ D(T1) =
A

W 2m(Ω).

Now define the Harmonic operator THar as the restriction of T1 to the domain

(1.27) D(THar) :=
o

W 2m(Ω) u
A

L2(Ω).

One of the purposes of this paper is to explore
A

L2(Ω), and to investigate its signif-
icance for the operator THar, in particular for the spectrum σ(THar), taking into
account (see (1.27) and [8, Definition 4.2]),

(1.28) THar : f → A(·, D)f for all f ∈ D(THar) =
o

W 2m(Ω) u
A

L2(Ω),

and

Ker(THar) =
A

L2(Ω).
As previously mentioned, THar is a self-adjoint extension of A as given by (1.2)

and (1.3), assuming the validity of Condition 1.1, and we illustrate some of its
interesting properties by several special examples presented in Section 4 below,
using the classical Laplacian with the conventional negative sign,
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(1.29) A(·, D) = −∆ := −
r∑

j=1

D2
j ,

where Dj = ∂/∂xj , in a bounded region Ω ⊂ Er, with corresponding linear operator

(1.30) A : f → −∆f

on its classical domain

(1.31) D(A) = C∞0 (Ω) ⊂ L2(Ω).

In this situation the domain of the minimal operator T0 is, see (1.17),

(1.32) D(T0) =
o

W 2(Ω)

and the domain of the maximal operator T1 = T ∗0 is denoted by the special notation
(emphasising the Laplacian ∆), see (1.18),

(1.33) D(T1) =
∆

W 2(Ω) := W 2(Ω) ∩
o

W 1(Ω) u
∆

L2(Ω)

where

(1.34)
∆

L2(Ω) = {f ∈ L2(Ω) : f ∈ C∞(Ω) and ∆f ≡ 0 in Ω}.

The fact that
∆

L2(Ω) consists of all harmonic functions in L2(Ω) accounts for the
name of the Harmonic operator, defined here by,

(1.35) THar : f → −∆f

on its domain

(1.36) D(THar) =
o

W 2(Ω) u
∆

L2(Ω),

noting that the indicated direct sum is within L2(Ω). In our examples in Section
4, with Ω the open unit disk in E2 (or the open unit ball in E3) we demonstrate
explicitly that

(1.37)
∆

W 2(Ω) " W 2(Ω)

and furthermore that D(THar) cannot be characterized by conditions localized to
the boundary ∂Ω - even though such a boundary value characterization may seem,
at first glance, to be analogous to a regular problem for ordinary differential oper-
ators, see Remark 1.2 above.

We close this introductory section with a preliminary theorem.

Theorem 1.6. Let A(·, D) be an elliptic partial differential expression defined on
a bounded region Ω ⊂ Er, with corresponding linear operator A on D(A) = C∞0 (Ω),
as in (1.1) to (1.3) and satisfying Condition 1.1; and let T0 and T1 be the minimal
and maximal operators for A as in (1.17) to (1.22). Then there exists an orthogonal
direct sum decomposition of the Hilbert space L2(Ω)

(1.38) L2(Ω) = T0

(
o

W 2m(Ω)
)
⊥
⊕

A

L2(Ω).

Further, these two closed Hilbert subspaces have dimension

(1.39) dim
(
T0

(
o

W 2m(Ω)
))

= dim
(

A

L2(Ω)
)

= ℵ0.
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Proof. A consequence of Weyl’s Lemma, see [8, Lemma 3.1] and Remark 1.5, asserts
that

(1.40)
A

L2(Ω) =
[
T0

(
o

W 2m(Ω)
)]⊥

=
{
T0g : g ∈

o

W 2m(Ω)
}⊥

.

We next demonstrate that T0

(
o

W 2m(Ω)
)

is a closed subspace of L2(Ω), which

implies the result (1.38).

Let
{
gn ∈

o

W 2m(Ω) : n ∈ N
}

be a sequence such that {T0gn : n ∈ N} is a Cauchy

sequence in L2(Ω). Because the map

(1.41) TDir : W 2m(Ω) ∩
o

Wm(Ω) → L2(Ω)

is a bounded bijection onto L2(Ω) with a bounded inverse (see (1.7) above), the
sequence {gn : n ∈ N} is a Cauchy sequence in the Sobolev norm of W 2m(Ω). Thus
there exists some g ∈W 2m(Ω) such that

(1.42) lim
n→∞

‖gn − g‖2m = 0.

Since
o

W 2m(Ω) is closed in the Sobolev space W 2m(Ω), g ∈
o

W 2m(Ω). Moreover

the map TDir in (1.41) is bounded, and T0 is the restriction of TDir to
o

W 2m(Ω), so
by (1.42)

(1.43) lim
n→∞

T0gn = T0g

in L2(Ω). Hence T0

(
o

W 2m(Ω)
)

is a closed subspace of the Hilbert space L2(Ω).

In order to prove (1.39) we recall that L2(Ω) is a separable Hilbert space, so that

each of the two subspaces T0

(
o

W 2m(Ω)
)

and
A

L2(Ω) is either of finite or denumer-

able dimension. Since C∞0 (Ω) ⊂
o

W 2m(Ω) is not finite dimensional (for each k ∈ N
there exist k functions ϕ1, ϕ2, . . . , ϕk ∈ C∞0 (Ω) with pairwise disjoint supports), we

observe that
o

W 2m(Ω) is not finite dimensional. Further, the map TDir in (1.41) is

an injection so we conclude that T0

(
o

W 2m(Ω)
)

is not finite dimensional, and hence

dim
(
T0

(
o

W 2m(Ω)
))

= ℵ0.

A similar argument holds for
A

L2(Ω). Clearly C∞(∂Ω) is not finite dimensional;
for each k ∈ N there exist k functions ψ1, ψ2, . . . , ψk ∈ C∞(∂Ω) which form a
linearly independent set over C. Now define the functions {uk ∈ W 2m(Ω) : k ∈ N}
by

A(·, D)uk = 0, uk|∂Ω = ψk,
∂uk

∂n

∣∣∣∣
∂Ω

= 0, . . . ,
∂m−1uk

∂nm−1

∣∣∣∣
∂Ω

= 0.

The linear independence of the set {ψ1, ψ2, . . . , ψk} implies that the set

{u1, u2, . . . , uk}
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is linearly independent in
A

L2(Ω), so

dim
(

A

L2(Ω)
)

= ℵ0.

�

2. The spectrum of THar

The purpose of this section is to examine the spectrum of the self-adjoint operator
THar defined in (1.27) and (1.28); the essential results are collected in the following
Theorem 2.1.

Theorem 2.1. Let A(·, D) be an elliptic partial differential expression on a bounded
region Ω ⊂ Er, with the corresponding minimal operator T0 as defined in (1.17)
above; let the corresponding Harmonic operator THar on D(THar) be given as in
(1.27) and (1.28). Then

(a) The spectrum σ(THar) of the operator THar in L2(Ω) consists of:
(i) the eigenvalue λ = 0 of countable multiplicity, and

(ii) a discrete countable set of real non-zero eigenvalues each of finite mul-
tiplicity.

(b) Let (λn : n ∈ N) denote the sequence of all non-zero eigenvalues with
elements repeated according to multiplicity; then limn→∞ |λn| = ∞.

(c) The eigenspace of the eigenvalue 0 is precisely the linear manifold
A

L2(Ω) ⊂
D(THar) as defined in (1.22).

(d) The eigenvalue sequence (λn : n ∈ N) of (b) coincides with the eigenvalue
sequence of the following boundary value problem in L2(Ω), with the same

corresponding eigenvalue multiplicities, (recall that D(T0) =
o

W 2m(Ω))

(2.1) 〈T0v, T0ϕ〉 = λ 〈v, T0ϕ〉 for all ϕ ∈
o

W 2m(Ω)

and

(2.2) v ∈
o

W 2m(Ω).

(e) The essential spectrum σess(THar) = {0} and so is non-empty.

Remark 2.2. In general, we cannot exclude the possibility that the eigenvalue se-
quence (λn : n ∈ N) accumulates at both +∞ and −∞. If however T0 is a positive

operator, i.e. if 〈T0v, v〉 > 0 for all v ∈
o

W 2m(Ω) with v 6= 0, then the eigenvalues
of the problem (2.1) and (2.2) are all positive and limn→∞ λn = ∞.

We break down the proof of Theorem 2.1 into several lemmata.

Lemma 2.3. Let TDir denote the Dirichlet operator defined in (1.23); then there
exist positive numbers c1, c2 such that (recall that ‖·‖2m denotes the norm in the
Hilbert space W 2m(Ω))

(2.3) c1 ‖u‖2m ≤ ‖TDiru‖ ≤ c2 ‖u‖2m for all u ∈ D(TDir).

Proof. The existence of the number c2 follows from the fact that TDiru := A(·, D)u
as in (1.23), and that TDir is generated by a differential expression A(·, D) of order
2m with bounded coefficients in the compact set Ω.
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Due to our assumption (c) of Condition 1.1 and as a consequence of the fact that
the map in (1.5) is a Fredholm operator of index 0, the mapping TDir : D(TDir) →
L2(Ω) is one-to-one and onto, see (1.7). Further, since D(TDir), endowed with the
inner-product 〈·, ·〉2m , is a Hilbert space, the inverse mapping theorem ensures the
boundedness of T−1

Dir : L2(Ω) → W 2m(Ω), and hence the existence of the number
c1. �

Since T0 = TDir| o
W 2m(Ω)

, Lemma 2.3 shows, in particular, that

(2.4) (((v, ṽ))) := 〈T0v, T0ṽ〉 for all v, ṽ ∈
o

W 2m(Ω)

defines an inner product (((·, ·))) on
o

W 2m(Ω), where the corresponding norm |||v||| :=√
(((v, v))) is equivalent to the norm ‖·‖2m .

Lemma 2.4. The eigenvalue problem (2.1) and (2.2) has a (((·, ·)))-orthonormal and

complete sequence of eigenfunctions (vn ∈
o

W 2m(Ω) : n ∈ N). The corresponding
eigenvalues (λn : n ∈ N) are real and non-zero, and have finite multiplicity; also
limn→∞ |λn| = ∞.

Proof. For each fixed g ∈ L2(Ω), the linear functional Fg :
o

W 2m(Ω) → C, defined
by Fg[ϕ] := 〈T0ϕ, g〉 , is bounded since

|Fg[ϕ]| ≤ ‖T0ϕ‖ ‖g‖ = |||ϕ||| ‖g‖ for all ϕ ∈
o

W 2m(Ω).

The Riesz representation lemma for bounded linear functionals in Hilbert space

then provides a unique element v =: K0g ∈
o

W 2m(Ω), for all g ∈ L2(Ω), such that

(((ϕ, v))) = Fg[ϕ] for all ϕ ∈
o

W 2m(Ω).

This defines a linear operator K0 : L2(Ω) →
o

W 2m(Ω) satisfying

(2.5) (((ϕ,K0g))) = 〈T0ϕ, g〉 for all g ∈ L2(Ω) and ϕ ∈
o

W 2m(Ω).

Also K0 is bounded since, for each g ∈ L2(Ω), the choice ϕ := K0g in (2.5) gives

|||K0g|||2 = 〈T0(K0g), g〉 ≤ ‖T0(K0g)‖ ‖g‖ = |||K0g||| ‖g‖ ,
whence |||K0g||| ≤ ‖g‖ .

Furthermore, K0| o
W 2m(Ω)

is (((·, ·)))-symmetric, because (2.5) and the 〈·, ·〉-symmetry

of T0 yield, for all g, h ∈
o

W 2m(Ω),

(((h,K0g))) = 〈T0h, g〉 = 〈h, T0g〉 = 〈T0g, h〉 = (((g,K0h))) = (((K0h, g))).

Finally, the embedding E :
o

W 2m(Ω) ↪→ L2(Ω) is compact due to the Sobolev-
Kondrachev-Rellich embedding theorem. Altogether, we obtain

K := K0 ◦ E :
o

W 2m(Ω) →
o

W 2m(Ω)

is compact and (((·, ·)))-symmetric.
The spectral theorem for compact symmetric operators in Hilbert space therefore

yields a (((·, ·)))-orthonormal and complete sequence (vn : n ∈ N) of eigenfunctions of
K, corresponding to a sequence of real eigenvalues (µn : n ∈ N), each of finite
multiplicity, and further limn→∞ µn = 0.
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Since Kvn = µnvn with vn ∈
o

W 2m(Ω), the results (2.4) and 2.5) imply, for all

n ∈ N and ϕ ∈
o

W 2m(Ω),

(2.6) µn 〈T0vn, T0ϕ〉 = µn(((vn, ϕ))) = (((Kvn, ϕ))) = 〈vn, T0ϕ〉 .

This implies µn 6= 0 for all n ∈ N, since otherwise (2.6) would give, see Theorem
1.6 above,

vn ∈
[
T0

(
o

W 2m(Ω)
)]⊥

=
A

L2(Ω)

whence vn = 0 since also vn ∈
o

W 2m(Ω).This result contradicts the fact that the
eigenfunction vn 6= 0.

If now we define λn := µ−1
n for all n ∈ N then the proof of Lemma 2.4 is

complete. �

Lemma 2.5. With (λn : n ∈ N) and (vn : n ∈ N) denoting the sequences of
eigenvalues and eigenfunctions, respectively, provided by Lemma 2.4, define the
sequence

(2.7) un := T0vn for all n ∈ N.

Then

(a) un ∈ D(THar) =
o

W 2m(Ω) u
A

L2(Ω) and THarun = λnun for all n ∈ N.
(b) The sequence (un : n ∈ N) is a 〈·, ·〉-orthonormal and complete system in

the Hilbert space

T0

(
o

W 2m(Ω)
)
⊂ L2(Ω).

(c) For each n ∈ N the finite multiplicity of λn, as an eigenvalue of the bound-
ary value problem (2.1) and (2.2), is equal to the multiplicity of λn as an
eigenvalue of the operator THar.

Proof. We give the proofs for the items (a), (b) and (c) as follows:

(a) For n ∈ N, the formulation (2.1) and (2.2) shows that

〈T0vn − λnvn, T0ϕ〉 = 0 for all ϕ ∈
o

W 2m(Ω),

whence, from Theorem 1.6,

T0vn − λnvn ∈
[
T0

(
o

W 2m(Ω)
)]⊥

=
A

L2(Ω).

Therefore

un = T0vn = λnvn + (T0vn − λnvn) ∈
o

W 2m(Ω) u
A

L2(Ω) = D(THar).

So T0vn−λnvn ∈
A

L2(Ω) and thus THar (T0vn − λnvn) = 0 implies THarun =
λnun by (2.7), since THarvn = T0vn = un.

(b) For all k, n ∈ N,

〈un, uk〉 = 〈T0vn, T0vk〉 = (((vn, vk))) = δn,k.
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Moreover, un = T0vn ∈ T0

(
o

W 2m(Ω)
)
. Then to show the asserted com-

pleteness property, let f = T0g ∈ T0

(
o

W 2m(Ω)
)

satisfy 〈f, un〉 = 0 for all

n ∈ N, which gives

0 = 〈f, un〉 = 〈T0g, T0vn〉 = (((g, vn))) for all n ∈ N;

whence the (((·, ·)))-completeness of the sequence (vn : n ∈ N) implies g = 0
and thus, f = 0.

(c) Let λ = λn1 = · · · = λnk
6= 0 be an eigenvalue of (2.1) and (2.2) with

multiplicity k ∈ N. Since T0 is one-to-one, (2.7) shows that un1 , · · · , unk
are

linearly independent eigenfunctions of THar corresponding to the eigenvalue
λ. Thus the multiplicity of λ as an eigenvalue of THar is at least k.

It remains to show that for each u ∈ D(THar) satisfying THaru = λu we
have u ∈ span{un1 , · · · , unk

}. Indeed, by the definition of D(THar), such an

element u can be represented as u = v+g with v ∈
o

W 2m(Ω) and g ∈
A

L2(Ω).

Thus, u = λ−1THaru = λ−1T0v ∈ T0

(
o

W 2m(Ω)
)
, whence part (b) above

yields

u =
∞∑

t=1

〈u, ut〉ut.

Since 〈u, ut〉 = 0 for all t different to every n1, n2, · · · , nk, this result implies
that u ∈ span{un1 , · · · , unk

}.
�

We can now complete the proof of Theorem 2.1.

Proof. First recall that T0

(
o

W 2m(Ω)
)

is a closed subspace of L2(Ω), and then,

using Theorem 1.6 above,

(2.8) L2(Ω) = T0

(
o

W 2m(Ω)
)
⊥
⊕

A

L2(Ω).

By Theorem 1.6, (1.39) and the separability of
A

L2(Ω) ⊂ L2(Ω) we can choose a

〈·, ·〉-orthonormal and complete system (ũn : n ∈ N) in
A

L2(Ω).

In fact, since Ker(THar) =
A

L2(Ω), see (1.28) above, ũn is an eigenfunction for the
eigenvalue 0 of THar, for each n ∈ N; thus 0 is an eigenvalue of countable multiplicity
and so the essential spectrum satisfies σess(THar) 6= ∅; since all the other eigenvalues
have finite multiplicity it follows that σess(THar) = {0}, as asserted in conclusion
(e).

From (2.8) and (b) of Lemma 2.5 and the above remark, we conclude that the
(interlacing) union of the systems (un : n ∈ N) and (ũn : n ∈ N) forms a 〈·, ·〉-
orthonormal and complete system in the whole of L2(Ω).

Using the Lemmata 2.4 and 2.5, we find that all the required conclusions (a) to
(e) have now been demonstrated, so that the proof of Theorem 2.1 is now complete.

�
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3. A strong formulation of the problem

In this short section, we give further consideration to the auxiliary eigenvalue
problem (2.1) and (2.2) which plays an important role in determining the spectrum
of the operator THar, in particular we prove the equivalence of this problem to the
4m-th order boundary value problem given by the differential equation

(3.1) THar(T0v) = λT0v

with generalized boundary conditions

(3.2) v ∈ D(THarT0).

Lemma 3.1. The eigenvalue problems (2.1) and (2.2), and (3.1) and (3.2) have
the same eigenpairs.

Proof. Let (v, λ) denote an eigenpair of (3.1) and (3.2). Since THar ⊂ T1 = T ∗0 the

boundary condition (3.2) yields v ∈ D(T0) =
o

W 2m(Ω), T0v ∈ D(T ∗0 ), whence (3.1)
gives

〈T ∗0 T0v, ϕ〉 = λ 〈T0v, ϕ〉 for all ϕ ∈
o

W 2m(Ω).

Exploiting the properties of the adjoint operator on the left-hand side, and the
symmetry of T0 on the right-hand side, we deduce that (v, λ) is an eigenpair of the
problem (2.1) and (2.2).

Conversely, let (v, λ) be an eigenpair of the problem (2.1) and (2.2). Then

〈T0v − λv, T0ϕ〉 = 0 for all ϕ ∈
o

W 2m(Ω),

whence T0v − λv ∈
[
T0

(
o

W 2m(Ω)
)]⊥

=
A

L2(Ω) from Theorem 1.6 above.

Consequently,

T0v = λv + (T0v − λv) ∈
o

W 2m(Ω) +
A

L2(Ω) = D(THar)

implying that v ∈ D(THarT0) and, by symmetry of THar,

〈T0v, T0ϕ〉 = 〈T0v, THarϕ〉 = 〈THarT0v, ϕ〉 for all ϕ ∈
o

W 2m(Ω).

Therefore, we obtain from (2.1) and (2.2), using the symmetry of T0 on the right-
hand side of (2.1), that

〈THarT0v − λT0v, ϕ〉 = 0 for all ϕ ∈
o

W 2m(Ω),

whence the density of
o

W 2m(Ω) in L2(Ω) provides the assertion. �

Remark 3.2. A “natural” Hilbert space for studying the eigenvalue problem (3.1)

and (3.2) is
o

W 2m(Ω) endowed with the inner product (((·, ·))) from (2.4), because
that inner product is generated by the right-hand side of (3.1). In this setting
problem (3.1) and (3.2) has an orthonormal and complete system of eigenfunctions,
as readily follows from Lemmata 2.4 and 3.1. Thus, Lemma 3.1 gives the full spectral
equivalence of the boundary value problems (2.1) and (2.2), and (3.1) and (3.2).

Remark 3.3. Since THar ⊂ T1 = T ∗0 , the eigenvalue problem

(3.3) T1T0v = λT0v
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with generalized boundary conditions

(3.4) v ∈ D(T1T0)

is also equivalent to (2.1) and (2.2), and to (3.1) and (3.2).
Furthermore, another phraseology for the eigenvalue problem (2.1) and (2.2) is

indicated by

T0v − λv ∈
[
T0

(
o

W 2m(Ω)
)]⊥

=
A

L2(Ω), with v ∈
o

W 2m(Ω)

or equally well

T0v = λv

(
mod

A

L2(Ω)
)

with v ∈
o

W 2m(Ω).

Example 3.4. Let m = 1 and A(·, D) = −∆, where ∆ is the Laplacian differential
expression in E2. Then, the boundary value problems (2.1) and (2.2), and (3.1) and
(3.2) are the weak and strong formulation, respectively, of the well-known buckling
plate problem [14, Chapter 9, Sections 62 to 65]

〈∆v,∆ϕ〉 = λ 〈v,−∆ϕ〉 for all ϕ ∈
o

W 2m(Ω)

with
v ∈

o

W 2m(Ω).

Remark 3.5. In general there appears to be no connection of THar with the Krein
extension (see [2, Example 5.3]) nor with the Friedrichs extension of T0, since both
of these extensions maintain the lower bound of T0. However, for example in the
case when A(·, D) = −∆, T0 has a positive lower bound whilst THar has zero as an
eigenvalue.

4. Boundary behaviour in D(THar)

In accord with the introductory Section 1 above, we now consider the classical
Laplacian differential expression

(4.1) ∆ :=
r∑

j=1

D2
j with Dj =

∂

∂xj

in a bounded region Ω, with smooth boundary ∂Ω, in the real Euclidean space Er

(r ≥ 2), as described in terms of the real cartesian coordinates x = (x1, x2, . . . , xr);
and we further consider the corresponding linear operator, with the conventional
negative sign,

(4.2) A : f → −∆f

on its classical domain

(4.3) D(A) := C∞0 (Ω),

which is interpreted as a dense linear manifold of the complex Hilbert space L2(Ω).
Then the operator A on D(A), as defined in (4.2) and (4.3), satisfies the general

Condition 1.1 of Section 1, and A has infinitely many self-adjoint extensions, see [8,
Theorem 2.1], including the classical Dirichlet and Neumann extensions, and also
unusual extensions such as the Harmonic operator

(4.4) THarf := −∆f
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for

(4.5) f ∈ D(THar) =
o

W 2(Ω) u
∆

L2(Ω)

as in (1.29) to (1.36) of Section 1. As remarked earlier the domain D(THar) is a
linear submanifold of L2(Ω), constituted as the direct sum of the two submanifolds:

(4.6)
o

W 2(Ω) =
{
f ∈W 2(Ω) : f |∂Ω = 0,

∂f

∂n

∣∣∣∣
∂Ω

= 0
}

and

(4.7)
∆

L2(Ω) = {f ∈ L2(Ω) : f ∈ C∞(Ω) and ∆f = 0 in Ω} .

We omit any further discussion of
o

W 2(Ω), which is defined within W 2(Ω) by the
familiar boundary conditions

f |∂Ω = 0,
∂f

∂n

∣∣∣∣
∂Ω

= 0,

and henceforth concentrate on the relatively unfamiliar manifold
∆

L2(Ω), the set
of all harmonic functions in L2(Ω). However, it is known (see Remark 1.5 above)

that
∆

L2(Ω) is a closed Hilbert subspace of L2(Ω). We present several interesting

examples of functions in
∆

L2(Ω), under the simplest kinds of geometric conditions
- say Ω is an open disk in E2 or an open ball in E3 - in order to demonstrate the

unavoidable obstacles to specifying or characterizing the functions of
∆

L2(Ω) through

their boundary behavior. In particular, we offer examples of functions in
∆

L2(Ω)
which do not belong to W 2(Ω), and which have highly singular and pathological
boundary values - in fact, no describable boundary values in any conventional sense.

Accordingly, we first fix the region Ω as the open unit disk centered at the origin
in the complex plane C (topologically E2),

(4.8) Ω = {z ∈ C : |z| < 1},
where the complex number

(4.9) z = x+ iy or z = r exp(iθ),

in terms of the real cartesian coordinates (x, y) or the polar coordinates (r, θ), as
usual.

Consider the complex linear space H(Ω) of all holomorphic functions in the open
disk Ω, that is

(4.10) H(Ω) := {F : Ω → C : F is holomorphic in Ω}.
Hence each function F ∈ H(Ω) has an absolutely convergent power series, with
complex coefficients {an : n ∈ N0},

(4.11) F (z) =
∞∑

n=0

anz
n for |z| < 1,

or equally well

(4.12) F (r exp(iθ)) =
∞∑

n=0

anr
n exp(inθ) for 0 ≤ r < 1 and 0 ≤ θ < 2π.
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Since we may write F (z) = u(x, y) + iv(x, y), for real-valued harmonic functions
u, v ∈ C∞(Ω), we observe that

(4.13) F ∈ C∞(Ω) and ∆F = 0 in Ω.

Thus we are led to seek holomorphic functions F ∈ H(Ω) that also belong to the
Hilbert space L2(Ω), that is,

(4.14)
∫∫
Ω

|F (z)|2 dxdy =
∫∫
Ω

(
u(x, y)2 + v(x, y)2

)
dxdy <∞,

so u, v ∈ L2(Ω).

Definition 4.1. The Bergman Hilbert space B2(Ω), see [5], is defined by

(4.15) B2(Ω) := H(Ω) ∩ L2(Ω),

which is known to be a Hilbert subspace of L2(Ω), see [16]. Hence B2(Ω) (and

the complex conjugate space B2(Ω)) are closed subspaces of
∆

L2(Ω), which is itself a
Hilbert subspace of L2(Ω). As such, using harmonic conjugates, we can demonstrate
that

(4.16)
∆

L2(Ω) = span{B2(Ω), B2(Ω)}.

Let F (z) =
∑∞

n=0 anz
n ∈ H(Ω). Then for each positive radius R < 1,

(4.17)
∫ R

0

∫ 2π

0

|F (z)|2 r drdθ =
∫ R

0

2π
∞∑

n=0

|an|2 r2n+1 dr = π
∞∑

n=0

|an|2

n+ 1
R2n+2.

Accordingly, for F ∈ H(Ω) we obtain the convenient test for F ∈ B2(Ω):

(4.18) F ∈ B2(Ω) if and only if
∞∑

n=0

|an|2

n+ 1
<∞.

The next example demonstrates that the boundary behaviour, with respect to
radial limits, of functions F ∈ B2(Ω) can be notoriously difficult and unpredictable.

Example 4.2. Define the holomorphic function F ∈ H(Ω) by

(4.19) F (z) :=
∞∑

n=0

z2n

= z + z2 + z4 + z8 + · · ·

which converges absolutely for each |z| < 1 and

(4.20)
∞∑

k=0

|ak|2

k + 1
=

∞∑
n=0

1
2n + 1

<∞,

and so F ∈ B2(Ω) ⊂
∆

L2(Ω), as desired.
Clearly the series (4.19) converges at no point on the boundary circle ∂Ω, so we

try to establish boundary values for F on ∂Ω by means of radial limits for each ray,
fixed by θ ∈ [0, 2π), as in

(4.21) lim
r↗1

F (r exp(iθ)) = lim
r↗1

∞∑
n=0

exp(i2nθ)r2
n

.
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First let θ = pq−1π, for positive integers p < q, and take q = 2t for some t ∈ N.
Then exp(i2nθ) = exp(i2n−tpπ) = 1, for all n > t. Hence for each θ of a countable
but dense set of rays Θ ⊂ [0, 2π)

lim
r↗1

|F (r exp(iθ))| = +∞.

In greater detail we compute, for each N ∈ N with N > t+ 1

|F (r exp(iθ))| ≥
N∑

n=t+1

r2
n

−
t∑

n=0

1

and thus

|F (r exp(iθ))| ≥
∞∑

n=t+1

r2
n

− (t+ 1).

Since
∑∞

n=t+1 r
2n

tends to +∞ as r ↗ 1, we conclude that

lim
r↗1

|F (r exp(iθ))| = +∞ for all θ ∈ Θ.

For rays with θ /∈ Θ we can apply the famous Tauberian theorems of Hardy
and Littlewood, see [3] and [11, Theorems 90 and 114]. Namely, if there exists
θ ∈ [0, 2π) for which

(4.22) lim
r↗1

F (r exp(iθ)) = s,

where s ∈ C, then, with convergence in C,

(4.23)
∞∑

n=0

exp(i2nθ) = s.

However, (4.23) is impossible since |exp(i2nθ)| = 1 for all n ∈ N. Hence for each
θ ∈ [0, 2π) the finite radial limit of (4.22) cannot exist; therefore there is no finite
limit (as r ↗ 1) in (4.21) defining a finite value for F on ∂Ω.

Therefore we conclude, for this example, that F defined in (4.19) cannot be
assigned radial values f(θ), say, such that f ∈ L1(∂Ω).

A personal communication from J.M. Anderson [4] remarks, see [11, Theorem
116], that for the example

(4.24) F (z) =
∞∑

n=0

nz2n

,

which belongs to
∆

L2(Ω) as before,

lim sup
r↗1

|F (r exp(iθ))| = +∞,

for every θ ∈ [0, 2π).

Remark 4.3. As an interesting consequence of these arguments, it follows that F
of (4.19) does not belong to any Hardy space Hp, for any real p ≥ 1, see [12] and
[17]. Thus there is no possibility of defining a boundary function f ∈ L1[0, 2π) as
the L1-limit as r ↗ 1 of the functions fr : [0, 2π) → C, where fr(θ) := F (r exp(iθ))
for θ ∈ [0, 2π) (and all these functions are defined on [0, 2π), which domain can be
identified with the boundary circle ∂Ω).
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Remark 4.4. For F ∈ L2(Ω), as defined in (4.19) of Example 4.2, we note that, for
z ∈ Ω,

F ′(z) = 1 + 2z + 4z3 + 8z7 + · · ·
and that the test indicated in (4.18) shows that the derivative F ′ /∈ L2(Ω). We
conclude that at least one of the first-order cartesian partial derivatives of real and

imaginary parts of F is not in L2(Ω); hence F /∈ W 1(Ω). Therefore
∆

L2(Ω) is not
contained in the Sobolev space W 1(Ω), and furthermore the trace theory does not
apply to F.

We next turn to the case where Ω is the unit open ball centered at the origin in
E3. Thus

(4.25) Ω = {x = (x, y, z) : 0 ≤ x2 + y2 + z2 < 1},

or in terms of polar coordinates

(4.26) Ω = {(r, θ, ϕ) : r ∈ [0, 1), θ ∈ [−π/2, π/2], ϕ ∈ [0, 2π]}

where, as usual,

(4.27) x = r cos(θ) cos(ϕ), y = r cos(θ) sin(ϕ), z = r sin(θ).

Example 4.5. We examine the real function

(4.28) F : Ω → R given by F (x, y, z) =
[
(x+ 1)2 + y2 + z2

]−1/2
,

which is the Newtonian potential for a pole P0 at x = −1, y = z = 0, or

(4.29) P0 = (−1, 0, 0).

For each point P = (x, y, z) ∈ Ω, we also write

(4.30) F (P ) = |P − P0|−1
.

Here |P − P0| is the euclidean distance between P = (x, y, z) ∈ Ω and P0 ∈ ∂Ω.
Certainly F ∈ C∞(Ω) and ∆F ≡ 0 in Ω. By straightforward calculation, using

polar coordinates centered at P0, it can be verified that F ∈ L2(Ω) (although

F /∈W 1(Ω)); hence F ∈
∆

L2(Ω) as required.
In order to compute the boundary function f = F |∂Ω , we can either use radial

limits as r ↗ 1, or else note that F has a continuous extension to Ω\P0 which we
call f. Again direct calculations verify that f ∈ L1(∂Ω), yet f /∈ L2(∂Ω).

As a final comment on F = |P − P0|−1 as in (4.30), we can define (in terms of
the usual polar coordinates (4.27)),

(4.31) fr(θ, ϕ) := F (r, θ, ϕ) for all r ∈ [0, 1),

and interpret fr as a real function on the sphere S2. In this sense we can further
verify that

(4.32) lim
r↗1

fr = f

with convergence in L1(∂Ω), in fact uniform convergence on the exterior of each
fixed neighborhood of P0 ∈ ∂Ω.
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Example 4.6. As in the prior Example 4.5 consider the unit open ball Ω ⊂ E3 with
the boundary sphere S2 = ∂Ω. We shall utilize the function F of (4.30) to define a

function F ∗ ∈
∆

L2(Ω), which has a dense set of singularities on the boundary sphere
S2 = ∂Ω.

To define F ∗ ∈
∆

L2(Ω) choose a countable set of (distinct) points, dense in the
boundary space S2 = ∂Ω, say

(4.33) Pk ∈ ∂Ω for k ∈ N0 = {0, 1, 2, 3, · · · }

and fix P0 = (−1, 0, 0) as in (4.29) of Example 4.5. For each k ∈ N0 define the
corresponding harmonic function

(4.34) F (P, k) := |P − Pk|−1 for all P ∈ Ω.

Then F (P, 0) = F (P ) as in Example 4.5 above, and we sometimes denote F (·, k)
by F (P, k) or F (x, y, z, k) (or even F (r, θ, ϕ, k), as is convenient).

Lemma 4.7. For each F (·, k), with k ∈ N0,

(4.35) ‖F (·, k)‖L2(Ω) = ‖F (·, 0)‖L2(Ω) .

Further, for each compact ball BR(0) of radius R ∈ (0, 1) about the origin

(4.36) sup{|F (P, k)| : P ∈ BR(0)} = sup{|F (P, 0)| : P ∈ BR(0)}.

Proof. For each k ∈ N0 there exists a rigid rotation of Ω which carries Pk to P0, and
hence F (·, k) into F (·, 0). Since the norm for L2(Ω) and the uniform norm on BR(0)
are preserved under such rigid rotations, the required equalities in the lemma now
follow. �

Definition 4.8. Define the real positive function F ∗ in Ω by

(4.37) F ∗(P ) :=
∞∑

k=0

1
k!
F (P, k) for all P ∈ Ω.

Theorem 4.9.

F ∗ ∈
∆

L2(Ω).

Proof. By (4.36) we observe that, for P ∈ BR(0),

(4.38)

∣∣∣∣∣
n∑

k=m

1
k!
F (P, k)

∣∣∣∣∣ ≤ sup{|F (P, 0)| : P ∈ BR(0)}
n∑

k=m

1
k!

for all m < n in N0.

Hence the partial sums of the infinite series (4.37) form a Cauchy sequence in
the complete metric space C(BR(0)), and hence the series converges uniformly on
BR(0). Therefore F ∗ in (4.37) is well defined as a positive continuous function in
Ω.

Moreover, using (4.35) of Lemma 4.7, we note that the infinite series in (4.37)
has partial sums that constitute a Cauchy sequence in the complete metric space
L2(Ω). Therefore, compare [13, Chapter 3, Section 3.10],

(4.39) F ∗ ∈ L2(Ω) and ‖F ∗‖L2(Ω) ≤ exp(1) ‖F (·, 0)‖L2(Ω) .
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Thus by the closedness of
∆

L2(Ω), see the corresponding statement in Remark
1.5,

(4.40) F ∗ ∈
∆

L2(Ω),

as required by the theorem. �

We wish to examine the boundary values of F ∗, defined in various ways below,
to obtain the boundary function f∗ : ∂Ω → R. Just as in (4.31) we define, for each
r ∈ (0, 1) and then, using the coordinates (θ, ϕ) ∈ S2 = ∂Ω,

(4.41) f∗r (θ, ϕ) := F ∗(r, θ, ϕ) for all (θ, ϕ) ∈ S2.

Of course, along the rays (θ, ϕ) corresponding to the countable set of points Pk ∈ ∂Ω
for k ∈ N0, there is no finite radial limit. Accordingly we shall consider only a weak
definition of

(4.42) f∗ := lim
r↗1

f∗r ,

where we verify the appropriate convergence in L1(S2).
In order to establish the existence of the limit indicated in (4.42), and hence the

boundary function f∗ of F ∗, we consider the functions, for each k ∈ N0,

(4.43) fr(θ, ϕ, k) := F (r, θ, ϕ, k) for all (θ, ϕ) ∈ S2,

and

(4.44) f(·, ·, k) := lim
r↗1

fr(·, ·, k) in L1(S2),

just as in (4.32) (i.e. using radial limits to define f(θ, ϕ, k) as a boundary value for
F (·, θ, ϕ, k) as is done for the case k = 0 in Example 4.5).

Lemma 4.10. By the spherical symmetry of S2 = ∂Ω, as in the earlier Lemma
4.7, we find that for k ∈ N0 and r ∈ (0, 1):

(4.45) ‖fr(·, ·, k)‖L1(S2) = ‖fr(·, ·, 0)‖L1(S2) ,

(4.46) ‖f(·, ·, k)‖L1(S2) = ‖f(·, ·, 0)‖L1(S2)

and

(4.47) ‖f(·, ·, k)− fr(·, ·, k)‖L1(S2) = ‖f(·, ·, 0)− fr(·, ·, 0)‖L1(S2) .

Theorem 4.11. Considering all limits within the Banach space L1(S2), we verify
that

(4.48) lim
r↗1

f∗r (·, ·) =
∞∑

k=0

1
k!
f(·, ·, k).

The boundary function f∗ of F ∗, defined in (4.42) as

(4.49) f∗ := lim
r↗1

f∗r ∈ L1(S2),

can also be written in the form

(4.50) f∗ =
∞∑

k=0

1
k!
f(·, ·, k).

However f∗ /∈ L2(S2); in fact, for each non-empty open subset O ⊂ S2 we
observe that f∗|O /∈ L2(O).
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Proof. As in Example 4.5, f(·, ·, k) ∈ L1(S2) for each k ∈ N0. By Lemma 4.10,
∞∑

k=0

1
k!
f(·, ·, k) converges in L1(S2).

Next establish (4.48); for each r < 1, again referring to (4.47),∥∥∥∥∥f∗r (·, ·)−
∞∑

k=0

1
k!
f(·, ·, k)

∥∥∥∥∥
L1(S2)

=

∥∥∥∥∥F ∗(r, ·, ·)−
∞∑

k=0

1
k!
f(·, ·, k)

∥∥∥∥∥
L1(S2)

=

∥∥∥∥∥
∞∑

k=0

1
k!
fr(·, ·, k)−

∞∑
k=0

1
k!
f(·, ·, k)

∥∥∥∥∥
L1(S2)

≤
∞∑

k=0

1
k!
‖fr(·, ·, k)− f(·, ·, k)‖L1(S2)

= exp(1) ‖fr(·, ·, 0)− f(·, ·, 0)‖L1(S2) ;

by (4.44) we obtain the conclusion (4.48).
Finally consider the function of (4.49)

f∗ = lim
r↗1

f∗r ∈ L1(S2).

First note that each term of the series
∞∑

k=0

1
k!
f(θ, ϕ, k)

is positive (or +∞ at the corresponding singularity Pk ∈ ∂Ω). Moreover, f(·, ·, k) /∈
L2(S2) because of its behavior. near the point Pk.

In more detail, let O be a non-empty open subset of the spherical surface S2 =
∂Ω. Take a point Pk1 ∈ O, and then f(·, ·, k1) /∈ L2(O), which proves that

∞∑
k=0

1
k!
f(·, ·, k) /∈ L2(O).

�
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