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Ref.: W. Rudin, Real and Complex Analysis, 3"¢ Ed., McGraw-Hill, 1987, Chapter 1-3.

Let X be a set, e.g. X = R", and let P(X) = be the set of all subsets of X.

Definition 1 (o-algebra) A system of sets M C P(X) is called a o-algebra over X if
(1) X e M

(i) Ae M= X\AeM

(iii)) A;e M YieN= 2, Aie M

Definition 2 (positive measure) Let M be o-algebra over X. A map p : M — [0,00] is
called a positive measure, if

AieM VierithAiﬁAj:(Z)fori#ji,u(UAZ) :Zu(Ai).
i=1 i=1

Let [ = I' x -+ x I" = (ay,b;) X -+ X (ay,b,) be an open intervall in R™. Then the volume
of I is defined by |[I| = (by —ay) - ... (b, — a,). The same applies if one or more of the
component-intervals (a;, b;) are replaced by closed, semi-closed, semi-open intervals.

Definition 3 (outer measure on R") Let A C R" be an arbitrary set. Then

A(A) := inf {Z |L|: AC Uli und I; bounded interval Vi € N}

i=1 i=1
1s called the outer measure of the set A.

Remark: ) is not a positive measure on P(R").

Definition 4 (Lebesgue o-algebra, Caratheodory) A set A C R" is called Lebesgue-measurable
(short: A € L(R™)) if

ME) = MANE)+ MA°NE) VECR"
If X C R™ is Lebesgue-measurable, then let L(X) ={A C X : A is Lebesque-measurable}.

Theorem 5 L(R") is a o-algebra. The outer measure A (see Definition 3) is invariant under
FEulcidean motions and if it is restricted to L(R™) then it becomes a positive, complete measure

on L(R™).

In the following let X C R™ be a Lebesgue-measurable set. For f : X — R = [~00,00] let
ft=max{f,0}, f~ = —min{f,0}. Hence f = f* — f~.



Definition 6 (mesasurable functions)
(i) A function f: X — R is called measurable, if f’l((oz, oo]) € L(X) for all « € R,

(i) A function s : X — R is called an elementary function, if s possesses only finitely many
values o, . .., ay. In this case

k
5 = ZaiXAm A = s Hay).
i=1

Definition 7 (Lebesgue-integral for non-negative functions)

(i) Let s = 3% aixa, be a measurable elementary function. Then

k
/ sdx = ZOéM(Ai)
X i=1

is called the Lebesque-integral of s over X.

(ii) Let f: X — [0,00] be measurable. Then

fdx = sup/ sdx, S ={s:X — R measurable elementary function ,0 <s < f}
X seS JX

is called the Lebesque-integral of f over the set X.

Definition 8 (Lebesgue-integral for real- or complex-valued functions) Let IK = R or

C.
LYX) :={f: X = IK measurable :/ |f] dx < oo}.
be

For f € LMX) let fy = Rf, fo =S f. Then

/dex::/Xffrdas—/Xffdx+i(/Xf;“d:c—/xf{dm)

1s called the Lebesque-integral of f over the set X.

Definition 9 (f = g a.e.) Let f,g : X — IK be measurable. Then we say f = g almost
everywhere, if there ezists a set N of measure 0 such that f(x) = g(z) Yo € X \ N. FEquality
almost everywhere is an equivalence relation.

Definition 10 (essential supremum) Let F': X — R be measurable. Then
esssup F == inf{s € R: F(z) < s a.e. in X}.

15 called the essential supremum of F.



Definition 11 (The space LP(X))

(a) For1l <p< oo let

LP(X) = {u: X — R measurable: / |ul? dz < oo}
X

(b) For p= oo let
L®(X) = {u: X — R measurable: esssupy |u| < oo},
where esssupy v = inf{s € R : v(x) < s for almost all z € X }.

Definition 12 (Norm on LP(X)) For 1 <p < oo let

1/p
lull, = ( / |u|pdx)
X

[uflo := esssup [ul.

Then (LP(X),| - |lp) is a Banachspace. L*(X) is a Hilbertspace with inner product (f,g) =
Jx fodx.

and

Theorem 13 (Minkowski and Hélder inequalities)
(i) lu+olly < flull, + lvll, for all u,v e LP(X).

(11) Let 1 < p,q < oo such that }D + % =1. Then

[ uvldz < ol
X
for allu € LP(X) and all v € LY(X).

Theorem 14 (Dual space of LP(X)) Let1 <p < oo and let ¢ : LP(X) — R be a continuous
linear functional. Then there exists a unique v € L1(X), % + % =1, such that

o(u) = / wvdz for all uw € LP(X).
be
For short: (LP(X))* = LY(X).
Note: In general the theorem fails for p = oo, i.e., (L°°(X))* 2 LY(X).

Theorem 15 Let 1 < p < oo and u € LP(X). If (ug)ken is a sequence of functions in LP(X)
such that imy_,o [|ur — ||, = 0 then there exists a subsequence (uy,)en such that

llim ug, () = u(x) for almost all x € X.
—00



Theorem 16 Let 1 < p < 0o. The set C.(X) of continuous functions with compact support in
X are dense in LP(X). Here the support of a function is defined assupp f = {x € X : f(x) # 0}.

Definition 17 (Locally integrable functions) Let 1 < p < co. Define

LP

loc

(X) ={u: X — R measurable s.t. u € LP(K) for every compact set K C X}.

LP

e(X) is a vector space.

Theorem 18 (Monotone convergence) Let (uy)ren be a sequence of measurable functions
on X such that
0§U1§U2§U3§....

Then u(z) = limy o ug(x) exists for almost all x € X and

lim u dr = udzx.
k—o0 X X

Theorem 19 (Dominated convergence) Let (uy)ren be a sequence of measurable functions
on X. If there exists w € L' (X) such that |ux(x)| < w(z) for almost all x € X and all k € N
and if u(x) = limg_,o0 ug(x) exists almost everywhere in X then

lim u dr = udzr.
k—o0 X X

Theorem 20 (Fatou’s Lemma) Let (uy)ren be a sequence of measurable functions on X
such that ug(x) > 0 almost everywhere on X. Then

/ liminf uy doe < lim inf/ uy, dx.
X X

keN keN

Definition 21 An open, connected set @ C R" is called a C*-domain (a Lipschitz-domain)
if for every g € O there exists a radius r > 0 and a C'-function (Lipschitz-function) ~y :
R ! — R such that (up to rotation of the coordinate frame)

QN B.(xg) ={x = (2, 2,) € B(0) : &, > y(a)}.
Note that as a consequence

00N B,(xg) = {z = (2, x,) € By(20) : &, = y(2)}.
For x = (2/,~(2)) € 002N B,.(x) the vector

(Va(z), -1)

V14 [V

is called the exterior unit-normal of 02 at x. In case of a Lipschitz-domain the exterior unit-
normal v exists a.e. with respect to the surface-measure on OS).

v(z) =




Theorem 22 (Divergence theorem, Gauss theorem) Let ) C R" be a bounded C*'-domain
and let v be the exterior unit-normal on 0S). Then

of dr = fvido
Q Ox; a0

for every function f € C*(Q). The result also holds if Q is a bounded Lipschitz-domain.

Often the divergence theorem appears in the following form

/didea::j{ F-vdo
Q 80

for a vectorfield F : Q — R™. The components of F' = (Fy,..., F,) have to satisfy F; € C(Q)
fori=1,...,n.

Lemma 23 (Green’s identities) Let u,v € C%(Q). Then

/Audx = Vu-vdo,
Q o0

/VU'VUd$ = —/uAvdijj{ uVov - vdo,
Q Q o0

/(uAv —vAu)dr = j{ (uVv —ovVu) - vdo.
Q o0



