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Ref.: W. Rudin, Real and Complex Analysis, 3rd Ed., McGraw-Hill, 1987, Chapter 1–3.

Let X be a set, e.g. X = Rn, and let P(X) = be the set of all subsets of X.

Definition 1 (σ-algebra) A system of sets M⊂ P(X) is called a σ-algebra over X if

(i) X ∈M

(ii) A ∈M =⇒ X \ A ∈M

(iii) Ai ∈M ∀i ∈ N =⇒
⋃∞

i=1Ai ∈M

Definition 2 (positive measure) Let M be σ-algebra over X. A map µ : M → [0,∞] is
called a positive measure, if

Ai ∈M ∀i ∈ N with Ai ∩ Aj = ∅ for i 6= j =⇒ µ

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai).

Let I = I1 × · · · × In = (a1, b1) × · · · × (an, bn) be an open intervall in Rn. Then the volume
of I is defined by |I| = (b1 − a1) · . . . · (bn − an). The same applies if one or more of the
component-intervals (ai, bi) are replaced by closed, semi-closed, semi-open intervals.

Definition 3 (outer measure on Rn) Let A ⊂ Rn be an arbitrary set. Then

λ(A) := inf

{
∞∑
i=1

|Ii| : A ⊂
∞⋃
i=1

Ii und Ii bounded interval ∀i ∈ N

}

is called the outer measure of the set A.

Remark: λ is not a positive measure on P(Rn).

Definition 4 (Lebesgue σ-algebra, Caratheodory) A set A ⊂ Rn is called Lebesgue-measurable
(short: A ∈ L(Rn)) if

λ(E) = λ(A ∩ E) + λ(Ac ∩ E) ∀E ⊂ Rn.

If X ⊂ Rn is Lebesgue-measurable, then let L(X) = {A ⊂ X : A is Lebesgue-measurable}.

Theorem 5 L(Rn) is a σ-algebra. The outer measure λ (see Definition 3) is invariant under
Eulcidean motions and if it is restricted to L(Rn) then it becomes a positive, complete measure
on L(Rn).

In the following let X ⊂ Rn be a Lebesgue-measurable set. For f : X → R = [−∞,∞] let
f+ = max{f, 0}, f− = −min{f, 0}. Hence f = f+ − f−.



Definition 6 (mesasurable functions)

(i) A function f : X → R is called measurable, if f−1
(
(α,∞]

)
∈ L(X) for all α ∈ R,

(ii) A function s : X → R is called an elementary function, if s possesses only finitely many
values α1, . . . , αk. In this case

s =
k∑

i=1

αiχAi
, Ai = s−1(αi).

Definition 7 (Lebesgue-integral for non-negative functions)

(i) Let s =
∑k

i=1 αiχAi
be a measurable elementary function. Then∫

X

s dx :=
k∑

i=1

αiλ(Ai)

is called the Lebesgue-integral of s over X.

(ii) Let f : X → [0,∞] be measurable. Then∫
X

f dx := sup
s∈S

∫
X

s dx, S = {s : X → R measurable elementary function , 0 ≤ s ≤ f}

is called the Lebesgue-integral of f over the set X.

Definition 8 (Lebesgue-integral for real- or complex-valued functions) Let IK = R or
C.

L1(X) := {f : X → IK measurable :

∫
X

|f | dx <∞}.

For f ∈ L1(X) let f1 = <f, f2 = =f . Then∫
X

f dx :=

∫
X

f+
1 dx−

∫
X

f−1 dx+ i

(∫
X

f+
2 dx−

∫
X

f−2 dx

)
is called the Lebesgue-integral of f over the set X.

Definition 9 (f = g a.e.) Let f, g : X → IK be measurable. Then we say f = g almost
everywhere, if there exists a set N of measure 0 such that f(x) = g(x) ∀x ∈ X \ N . Equality
almost everywhere is an equivalence relation.

Definition 10 (essential supremum) Let F : X → R be measurable. Then

ess supF := inf{s ∈ R : F (x) ≤ s a.e. in X}.

is called the essential supremum of F .



Definition 11 (The space Lp(X))

(a) For 1 ≤ p <∞ let

Lp(X) = {u : X → R measurable:

∫
X

|u|p dx <∞}.

(b) For p =∞ let

L∞(X) = {u : X → R measurable: ess supX |u| <∞},

where ess supX v = inf{s ∈ R : v(x) ≤ s for almost all x ∈ X}.

Definition 12 (Norm on Lp(X)) For 1 ≤ p <∞ let

‖u‖p :=

(∫
X

|u|p dx
)1/p

and
‖u‖∞ := ess supX |u|.

Then (Lp(X), ‖ · ‖p) is a Banachspace. L2(X) is a Hilbertspace with inner product 〈f, g〉 :=∫
X
fg dx.

Theorem 13 (Minkowski and Hölder inequalities)

(i) ‖u+ v‖p ≤ ‖u‖p + ‖v‖p for all u, v ∈ Lp(X).

(ii) Let 1 ≤ p, q ≤ ∞ such that 1
p

+ 1
q

= 1. Then∫
X

|uv| dx ≤ ‖u‖p‖v‖q

for all u ∈ Lp(X) and all v ∈ Lq(X).

Theorem 14 (Dual space of Lp(X)) Let 1 ≤ p <∞ and let φ : Lp(X)→ R be a continuous
linear functional. Then there exists a unique v ∈ Lq(X), 1

p
+ 1

q
= 1, such that

φ(u) =

∫
X

uv dx for all u ∈ Lp(X).

For short: (Lp(X))∗ = Lq(X).

Note: In general the theorem fails for p =∞, i.e., (L∞(X))∗ ) L1(X).

Theorem 15 Let 1 ≤ p ≤ ∞ and u ∈ Lp(X). If (uk)k∈N is a sequence of functions in Lp(X)
such that limk→∞ ‖uk − u‖p = 0 then there exists a subsequence (ukl)l∈N such that

lim
l→∞

ukl(x) = u(x) for almost all x ∈ X.



Theorem 16 Let 1 ≤ p <∞. The set Cc(X) of continuous functions with compact support in
X are dense in Lp(X). Here the support of a function is defined as supp f = {x ∈ X : f(x) 6= 0}.

Definition 17 (Locally integrable functions) Let 1 ≤ p ≤ ∞. Define

Lp
loc(X) = {u : X → R measurable s.t. u ∈ Lp(K) for every compact set K ⊂ X}.

Lp
loc(X) is a vector space.

Theorem 18 (Monotone convergence) Let (uk)k∈N be a sequence of measurable functions
on X such that

0 ≤ u1 ≤ u2 ≤ u3 ≤ . . . .

Then u(x) := limk→∞ uk(x) exists for almost all x ∈ X and

lim
k→∞

∫
X

uk dx =

∫
X

u dx.

Theorem 19 (Dominated convergence) Let (uk)k∈N be a sequence of measurable functions
on X. If there exists w ∈ L1(X) such that |uk(x)| ≤ w(x) for almost all x ∈ X and all k ∈ N
and if u(x) := limk→∞ uk(x) exists almost everywhere in X then

lim
k→∞

∫
X

uk dx =

∫
X

u dx.

Theorem 20 (Fatou’s Lemma) Let (uk)k∈N be a sequence of measurable functions on X
such that uk(x) ≥ 0 almost everywhere on X. Then∫

X

lim inf
k∈N

uk dx ≤ lim inf
k∈N

∫
X

uk dx.

Definition 21 An open, connected set Ω ⊂ Rn is called a C1-domain (a Lipschitz-domain)
if for every x0 ∈ ∂Ω there exists a radius r > 0 and a C1-function (Lipschitz-function) γ :
Rn−1 → R such that (up to rotation of the coordinate frame)

Ω ∩Br(x0) = {x = (x′, xn) ∈ Br(x0) : xn > γ(x′)}.

Note that as a consequence

∂Ω ∩Br(x0) = {x = (x′, xn) ∈ Br(x0) : xn = γ(x′)}.

For x = (x′, γ(x′)) ∈ ∂Ω ∩Br(x0) the vector

ν(x) =
(∇γ(x′),−1)√
1 + |∇γ(x′)|2

is called the exterior unit-normal of ∂Ω at x. In case of a Lipschitz-domain the exterior unit-
normal ν exists a.e. with respect to the surface-measure on ∂Ω.



Theorem 22 (Divergence theorem, Gauss theorem) Let Ω ⊂ Rn be a bounded C1-domain
and let ν be the exterior unit-normal on ∂Ω. Then∫

Ω

∂f

∂xi
dx =

∮
∂Ω

fνi dσ

for every function f ∈ C1(Ω). The result also holds if Ω is a bounded Lipschitz-domain.

Often the divergence theorem appears in the following form∫
Ω

divF dx =

∮
∂Ω

F · ν dσ

for a vectorfield F : Ω→ Rn. The components of F = (F1, . . . , Fn) have to satisfy Fi ∈ C1(Ω)
for i = 1, . . . , n.

Lemma 23 (Green’s identities) Let u, v ∈ C2(Ω). Then∫
Ω

∆u dx =

∮
∂Ω

∇u · ν dσ,∫
Ω

∇u · ∇v dx = −
∫

Ω

u∆v dx+

∮
∂Ω

u∇v · ν dσ,∫
Ω

(u∆v − v∆u) dx =

∮
∂Ω

(u∇v − v∇u) · ν dσ.


