On the operator equation $e^A = e^B$

Christoph Schmoeger

Mathematisches Institut I, Universität Karlsruhe, Englerstrasse 2, D-76128 Karlsruhe, Germany

Received 14 April 2000; accepted 30 April 2002

Submitted by R.A. Brualdi

Abstract

Suppose that A and B are bounded linear operators on a complex Hilbert space and that $e^A = e^B$. It is well-known that if the spectrum of A is incongruent (mod 2πi) then $AB = BA$. In this note we show that if A is normal and $\|A\| \leq \pi$ then $e^A = e^B$ implies that $A^2B = BA^2$. If B is also normal, $\|B\| \leq \pi$ and $-i\pi$ is not an eigenvalue of A then we show that $e^A = e^B$ implies $AB = BA$ and $(A - B)^2 = 2\pi i(A - B)$.

© 2002 Published by Elsevier Science Inc.

AMS classification: 47A10; 47A60

Keywords: Normal operators; Exponentials

Throughout this paper let \mathcal{H} denote a complex Hilbert space and $\mathcal{L}(\mathcal{H})$ the Banach algebra of all bounded linear operators on \mathcal{H}. For $A \in \mathcal{L}(\mathcal{H})$ the spectrum, the set of eigenvalues, and the spectral radius of A are denoted by $\sigma(A)$, $\sigma_p(A)$, and $r(A)$, respectively. For the resolvent set of A we write $\rho(A)$. We use $N(A)$ and $A(\mathcal{H})$ to denote the kernel and the range of A, respectively.

We say that $\sigma(A)$ is incongruent (mod 2πi), if

$$\sigma(A) \cap \sigma(A + 2j\pi i) = \emptyset \quad \text{for} \ j = \pm 1, \pm 2, \ldots.$$

If $A \in \mathcal{L}(\mathcal{H})$ is normal (AA* = A*A) and has the spectral resolution

$$A = \int_{\sigma(A)} \lambda dE(\lambda),$$

(1)
let $E(\Omega)$ denote the associated projection measure defined on the Borel subsets $\Omega \subseteq \sigma(A)$. It is convenient to think of E as being defined for all Borel subsets in C: put $E(\Omega) = E(\Omega \cap \sigma(A))$. It is well-known that $\|A\| = r(A)$ if A is normal.

Let $T \in L(H)$. The map $\delta_T : L(H) \to L(H)$, defined by

$$\delta_T(C) = CT - TC \quad (C \in L(H))$$

is called the inner derivation determined by T. δ_T is a bounded linear operator on $L(H)$ with $\|\delta_T\| \leq 2\|T\|$.

It is shown in [3] that

$$\sigma(\delta_T) = \{\lambda - \mu : \lambda, \mu \in \sigma(T)\}, \quad (2)$$

From [4, Proposition 6.4.8] it follows that $e^{\delta_T}(C) = e^{T}Ce^{-T}$ for all $C \in L(H)$.

Throughout this note let f denote the entire function $f : C \to C$ given by

$$f(z) = \begin{cases} z^{-1}(e^z - 1), & \text{if } z \neq 0, \\ 1, & \text{if } z = 0. \end{cases}$$

From $zf(z) = f(z)z = e^z - 1$ and (3) we get

$$f(\delta_T)(\delta_T(C)) = e^{-T}Ce^T - C \quad \text{for all } C \in L(H). \quad (4)$$

For a bounded linear operator F on $L(H)$ we denote the kernel of F by $N(F)$.

Proposition 1. Let $A \in L(H)$ such that $r(A) \leq \pi$. Let

$$M_A = \{\lambda \in \sigma(\delta_A) : f(\lambda) = 0\}.$$

(a) If $\sigma(A)$ is incongruent (mod $2\pi i$), then $M_A = \emptyset$.
(b) If $M_A = \emptyset$, then $f(\delta_A)$ is an invertible operator on $L(H)$.
(c) $M_A \subseteq [2\pi i, -2\pi i]$.
(d) $N(f(\delta_A)) = N(\delta_A - 2\pi i) \oplus N(\delta_A + 2\pi i)$.
(e) If $C \in N(\delta_A - 2\pi i)$ or $C \in N(\delta_A + 2\pi i)$, then $C^2 = 0$.

Proof. (a) and (b) are clear.

(c) Take $\lambda \in M_A$, then $0 \neq \lambda \in \sigma(\delta_A)$ and $e^\lambda = 1$. Thus $\lambda = 2j\pi i$ for some $j \in \mathbb{Z}\setminus\{0\}$. It follows from (2) that there are $\alpha, \beta \in \sigma(A)$ such that $\lambda = \alpha - \beta$. Hence $2|j|\pi = |\lambda| \leq |\alpha| + |\beta| \leq 2r(A) \leq 2\pi$, therefore $|j| \leq 1$. This shows that $\lambda \in [2\pi i, -2\pi i]$.

(d) Since $2\pi i$ and $-2\pi i$ are simple zeros of f, there is an entire function g such that

$$f(\lambda) = g(\lambda)(\lambda - 2\pi i)(\lambda + 2\pi i)$$

and $g(\lambda) \neq 0$ for all $\lambda \in \sigma(\delta_A)$, thus $g(\delta_A)$ is invertible on $L(H)$ and

$$f(\delta_A) = g(\delta_A)(\delta_A - 2\pi i)(\delta_A + 2\pi i).$$
Satz 80.3 in [1] gives now
\[N(f(\delta_A)) = N(\delta_A - 2\pi i) \oplus N(\delta_A + 2\pi i). \]

(e) Take \(C \in N(\delta_A - 2\pi i) \), thus \(CA - AC = 2\pi i C \). Therefore \(2\pi i C^2 = C^2 A - CAC = C^2 A - (AC + 2\pi i C)C = C^2 A - AC^2 - 2\pi i C^2 \), hence
\[C^2 A - AC^2 = 4\pi i C^2. \]
Assume that \(C^2 \neq 0 \), then \(4\pi i \in \sigma(\delta_A) \), therefore, by (2), \(4\pi \leq 2r(A) \leq 2\pi \), a contradiction. Thus \(C^2 = 0 \). □

Notation. Let \(T \in \mathcal{L}(H) \), \(\rho(T) \subseteq \mathbb{C} \) and \(\rho(T) = \emptyset \). Let \(S(T, \rho(T)) \) be the subset of \(H \) defined by
\[S(T, \rho(T)) = \bigcap_{\lambda \in \rho(T)} (T - \lambda)(H). \]

Proposition 2. Let \(A \in \mathcal{L}(H) \) be normal.
(a) For \(\mu \in \mathbb{C} \), \((A - \mu)(H) = (A^* - \overline{\mu})(H) \).
(b) If \(A \) has the spectral resolution (1) and if \(B \in \mathcal{L}(H) \), then
\[S(A, \rho(B)) = E(\sigma(A) \cap \sigma(B))(H). \]

Proof. (a) Since \(A \) is normal, \(A - \mu \) is normal. Use Exercise 12.36 in [6] to see that \((A - \mu)(H) = (A^* - \overline{\mu})(H) \).
(b) follows from Theorem 1 in [5]. □

Proposition 3. Let \(A \in \mathcal{L}(H) \) be normal and suppose that \(A \) has the spectral resolution (1). For \(\lambda_0 \in \mathbb{C} \), \(C \in N(\delta_A - \lambda_0) \) and \(D \in N(\delta_A + \lambda_0) \) we have
\[C(H) \subseteq E(\sigma(A) \cap \sigma(A - \lambda_0))(H) \]
and
\[D^*(H) \subseteq E(\sigma(A) \cap \sigma(A - \lambda_0))(H). \]

Proof. Take \(C \in \mathcal{L}(H) \) with \(CA - AC = \lambda_0 C \), thus \(AC = C(A - \lambda_0) \). Put \(B = A - \lambda_0 \). For \(\mu \in \rho(B) \) we get
\[(A - \mu)C(B - \mu)^{-1} = AC(B - \mu)^{-1} - \mu C(B - \mu)^{-1} \]
\[= CB(B - \mu)^{-1} - \mu C(B - \mu)^{-1} \]
\[= C(B - \mu)(B - \mu)^{-1} = C. \]
This shows that \(C(H) \subseteq S(A, \rho(B)) \). From Proposition 2(b) we get
\[S(A, \rho(B)) = E(\sigma(A) \cap \sigma(B))(H), \] (5)
thus \(C(H) \subseteq E(\sigma(A) \cap \sigma(A - \lambda_0))(H) \).
Now take $D \in N(\delta A + \lambda_0)$, hence $DA - AD = -\lambda_0 D$ thus $DA = (A - \lambda_0)D$.

As above let $B = A - \lambda_0$. Then $A^*D^* = D^*B^*$. A similar computation as above gives

$$(A^* - \mu)D^*(B^* - \mu)^{-1} = D^*$$

for all $\mu \in \rho(B^*)$.

Thus $D^*(\mathcal{H}) \subseteq S(A^*, \rho(B^*))$. Since $\rho(B^*) = \{\mu \in \mathbb{C} : \Pi \in \rho(B)\}$, we get from Proposition 2(a) that

$$S(A^*, \rho(B^*)) = S(A, \rho(B)),$$

hence, by (5), $D^*(\mathcal{H}) \subseteq E(\sigma(A) \cap \sigma(A - \lambda_0))$. \quad \Box

Proposition 4. Let $A \in \mathcal{L}(\mathcal{H})$ be normal and $r(A) \leq /afii9843i$.

(a) If $C \in N(\delta A + 2\pi i)$ then $AC = i\pi C$.
(b) If $D \in N(\delta A - 2\pi i)$ then $AD^* = i\pi D^*$ and $DA = i\pi D$.

Proof. Suppose that A has the spectral resolution (1). It is clear that

$$\sigma(A) \cap \sigma(A + 2\pi i) \subseteq \{i\pi\}.$$}

From Theorem 12.29 in [6] it follows that $E([i\pi]) = N(A - i\pi)$. Thus

$$E(\sigma(A) \cap \sigma(A + 2\pi i))(\mathcal{H}) \subseteq N(A - i\pi). \quad (6)$$

(a) Take $C \in N(\delta A + 2\pi i)$ and put $\lambda_0 = -2\pi i$. Then $C \in N(\delta A - \lambda_0)$. Proposition 3 and (6) give

$$C(\mathcal{H}) \subseteq N(A - i\pi),$$

hence $AC = i\pi C$.

(b) Take $D \in N(\delta A - 2\pi i)$ and put $\lambda_0 = -2\pi i$. Then $D \in N(\delta A + \lambda_0)$. Proposition 3 and (6) give

$$D^*(\mathcal{H}) \subseteq N(A - i\pi),$$

hence $AD^* = i\pi D^*$. Therefore we have $AD^*x = i\pi D^*x$ for each $x \in \mathcal{H}$. The normality of A gives $A^*D^*x = -i\pi D^*x$ for all $x \in \mathcal{H}$, thus $A^*D^* = -i\pi D^*$, hence $DA = i\pi D$. \quad \Box

We now are in a position to state the main results of this paper. The following theorem is due to Hille [2]. For the convenience of the reader we shall include a proof.

Theorem 1. Let $A, B \in \mathcal{L}(\mathcal{H})$ and $e^A = e^B$. If $\sigma(A)$ is incongruent (mod $2\pi i$) then $AB = BA$.

Proof. From (4) we get

$$f(\delta_A)(\delta_A(B)) = e^{-A}Be^A - B = 0,$$

thus $AB - BA \in N(f(\delta_A))$. Use Proposition 1(a) and (b) to see that $AB = BA$. \quad \Box
The restriction concerning the spectrum of A in Theorem 1 cannot be dispensed with, as is seen by the following two-dimensional example.

Example. Let $A = \pi \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $B = \pi \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix}$.

By induction we see that

\[A^{2n} = (-1)^n \pi^{2n} I = B^{2n}, \quad A^{2n+1} = (-1)^n \pi^{2n} A, \]

and

\[B^{2n+1} = (-1)^n \pi^{2n} B \quad \text{for } n = 0, 1, 2, \ldots. \]

This shows that $e^A = -I = e^B$. We have

\[AB = \pi^2 \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \neq \pi^2 \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} = BA. \]

It is easily seen that A is normal and $\sigma(A) = \{i\pi, -i\pi\}$, thus $r(A) = \pi$ and $\sigma(A)$ is not incongruent (mod 2π). But we have $A^2B = BA^2$, which will be the case in general as the following theorem shows.

Theorem 2. Suppose that $A \in \mathcal{L}(\mathcal{H})$ is normal, $B \in \mathcal{L}(\mathcal{H})$ and $e^A = e^B$.

(a) If $r(A) < \pi$ then $AB = BA$.

(b) If $r(A) = \pi$ then $A^2B = BA^2$.

(c) If $r(A) \leq \pi$ and $i\pi \notin \sigma_p(A)$ then $AB = BA$.

(d) If $r(A) \leq \pi$ and $-i\pi \notin \sigma_p(A)$ then $AB = BA$.

Proof. As in the proof of Theorem 1 we get $AB - BA \in N(f(\delta_A))$.

(a) If $r(A) < \pi$, then $\sigma(A)$ is incongruent (mod 2π), hence $AB = BA$, by Theorem 1.

(b) From Proposition 1 we see that there are operators $C \in N(\delta_A + 2\pi i)$ and $D \in N(\delta_A - 2\pi i)$ such that $AB - BA = C + D$. From $CA - AC = -2\pi i C$ and Proposition 4(a) we derive $AC = i\pi C$, hence

\[CA = AC - 2\pi i C = -i\pi C = -AC, \]

thus

\[AC + CA = 0. \quad (7) \]

Use Proposition 4(b) and $DA - AD = 2\pi iD$ to get $DA = i\pi D$ and

\[AD = DA - 2\pi i D = -i\pi D = -DA, \]
hence
\[AD + DA = 0. \]
(8)

From \(AB - BA = C + D \) it follows that
\[A^2B - ABA = AC + AD \]
(9)

and
\[ABA - B^2 = CA + DA. \]
(10)

The addition of (9) and (10) shows
\[A^2B - BA^2 = AC + CA + AD + DA. \]

Now use (7) and (8) to get
\[A^2B = BA^2. \]
(c) As in (b) we have \(AB - BA = C + D \) with \(C \in N(\delta A + 2\pi i) \) and \(D \in N(\delta A - 2\pi i) \). Since \(N(A - i\pi) = \{0\} \) we conclude from Proposition 4 that \(C = 0 = D^* \), thus \(C = D = 0 \), hence \(AB = BA \).

(d) If \(-i\pi \notin \sigma_p(A)\) then \(i\pi \notin \sigma_p(-A)\). From \(e^{-A} = e^{-B} \) we get then \(AB = BA \) as in the proof of (c). □

Now suppose that the spectrum \(\sigma(A) \) of \(A \in \mathcal{L}(\mathcal{H}) \) satisfies
\[\sigma(A) \subseteq \{ z \in \mathbb{C} : |\text{Im} \ z| \leq \pi \} \]
(11)

and
\[\sigma(A) \cap \sigma(A + 2\pi i) \subseteq \{ i\pi \}. \]
(12)

Then it is easily seen that \(M_A \subseteq \{2\pi i, -2\pi i\} \) and
\[N(f(\delta A)) = N(\delta A - 2\pi i) \oplus N(\delta A + 2\pi i). \]

Let \(A \) be normal and suppose that (11) and (12) hold. Then it is easy to see that the statements of Proposition 4 remain valid. Thus an inspection of the proof of Theorem 2 shows the following result:

Theorem 3. Suppose that \(A \in \mathcal{L}(\mathcal{H}) \) is normal, \(B \in \mathcal{L}(\mathcal{H}) \), \(e^A = e^B \) and \(\sigma(A) \) satisfies (11) and (12). Then \(A^2B = BA^2 \). If \(i\pi \notin \sigma_p(A) \) or \(-i\pi \notin \sigma_p(A)\) then \(AB = BA \).

Theorem 4. Let \(A, B \in \mathcal{L}(\mathcal{H}) \), let \(e^A = e^B \) and let \(\sigma(A) \) and \(\sigma(A - B) \) be incongruent (mod \(2\pi i \)). Then there is some \(k \in \mathbb{Z} \) with
\[A - B = (2k\pi i)I. \]

Proof. From Theorem 1 we get \(AB = BA \), thus \(e^{A-B} = I \). Put \(C = A - B \) and let \(g(z) = e^z - 1 \) (\(z \in \mathbb{C} \)). Hence \(g(C) = 0 \). Take \(\lambda, \mu \in \sigma(C) \), then \(e^\lambda = e^\mu = 1 \), thus \(\lambda - \mu = 2j\pi i \) for some \(j \in \mathbb{Z} \). Since \(\sigma(C) \) is incongruent (mod \(2\pi i \),...
we get \(\lambda = \mu \). This shows that there is \(k \in \mathbb{Z} \) such that \(\sigma(C) = \{2k\pi i\} \). Since \(2k\pi i \) is a simple zero of \(g \), there is an entire function \(h \) with \(g(\lambda) = h(\lambda)(\lambda - 2k\pi i) \) and \(h(2k\pi i) \neq 0 \).

This gives

\[
0 = g(C) = h(C)(C - 2k\pi i).
\]

Since \(h(2k\pi i) \neq 0 \), there is an entire function \(\sigma(C) = \{\frac{2k}{a}i\} \). Since \(\sigma(C) \) is a simple zero of \(g \), there is an entire function \(h \) with \(g(\lambda) = h(\lambda)(\lambda - \frac{2k}{a}i) \) and \(h(\frac{2k}{a}i) = 0 \).

This gives

\[
0 = g(C) = h(C)(C - \frac{2k}{a}i).
\]

Since \(h(C) \) is invertible, \(C = \frac{2k}{a}iI \). \(\square \)

As an immediate consequence of Theorem 4 we have the following well-known result:

Corollary 1. If \(A, B \in L(H) \) are selfadjoint and if \(e^A = e^B \) then \(A = B \).

Proof. From \(\sigma(A), \sigma(A - B) \subseteq \mathbb{R} \) we see that \(\sigma(A) \) and \(\sigma(A - B) \) are incongruent (mod \(2\pi i \)). Theorem 4 gives \(A - B = 2k\pi iI \) for some \(k \in \mathbb{Z} \). Since \(A - B = (A - B)^* = -2k\pi iI = B - A, A = B \). \(\square \)

Corollary 2. If \(A, B \in L(H) \) are normal and if \(e^A = e^B \) then \(A + A^* = B + B^* \).

Proof. Since \(A \) and \(B \) are normal, we see that

\[
e^{A + A^*} e^{A^*} = e^A (e^A)^* = e^B (e^B)^* = e^B e^{B^*} = e^{B + B^*}.
\]

We now use Corollary 1. \(\square \)

For our next result we need the following proposition.

Proposition 5. Suppose that \(A \) and \(B \) are normal operators in \(L(H) \), \(r(A) \leq \pi, r(B) \leq \pi \) and \(AB = BA \). Then

(a) \(A - B \) is normal;

(b) \(N(A - B - 2\pi i) = N(A - i\pi) \cap N(B + i\pi) \).

Proof. (a) From \(AB = BA \) we get \(AB^* = B^*A \) and \(A^*B = BA^* \) by the Fuglede–Putnam–Rosenblum Theorem [6, Theorem 12.16]. A simple computation gives then that \((A - B)(A - B)^* = (A - B)^*(A - B)\).

(b) It is clear that \(N(A - i\pi) \cap N(B + i\pi) \subseteq N(A - B - 2\pi i) \). Put \(C = A - B \) and take \(x_0 \in N(A - B - 2\pi i) \). We can assume that \(\|x_0\| = 1 \). For the following computations let \(\langle \cdot | \cdot \rangle \) denote the inner product \(H \). From \(Cx_0 = 2\pi ix_0 \) and (a) we get

\[
A^*x_0 = B^*x_0 - 2\pi ix_0 \quad \text{and} \quad A^*x_0 = B^*x_0 - 2\pi ix_0.
\]

(13)
Put \(D = i(B - B^*) \). Then \(D^* = D \) and
\[
(Dx_0|x_0) = i((Bx_0|x_0) - (B^*x_0|x_0))
\]
\[
= -2 \text{Im}(Bx_0|x_0).
\]
From \(|\text{Im}(Bx_0|x_0)| \leq |(Bx_0|x_0)| \leq \|B\| = r(B) \leq \pi\), we see that \(-\pi \leq \text{Im}(Bx_0|x_0)\). Thus
\[
(Dx_0|x_0) \leq 2\pi. \quad (14)
\]
Now use (13) and (14) to derive
\[
\|((A - i\pi)x_0)^2 = ((A^* + i\pi)(A - i\pi)x_0|x_0)
\]
\[
= \|A^*x_0\|^2 + i\pi((A - A^*)x_0|x_0) + \pi^2
\]
\[
\leq 2\pi^2 + \pi((A - A^*)x_0|x_0)
\]
\[
= 2\pi^2 + i\pi((B - B^* + 4\pi)\text{Im}(Bx_0))
\]
\[
= -2\pi^2 + \pi(Dx_0|x_0)
\]
\[
\leq -2\pi^2 + 2\pi^2 = 0.
\]
Thus \(x_0 \in N(A - i\pi) \), hence, by (13), \(x_0 \in N(B + i\pi) \). \(\square\)

Theorem 5. Suppose that \(A \) and \(B \) are normal operators in \(\mathcal{L}(H) \), \(r(A) \leq \pi \), \(r(B) \leq \pi \), and \(e^A = e^B \).

(a) If \(i\pi \notin \sigma_p(A) \) then \(AB = BA \) and \(-(1/2\pi i)(A - B) \) is an orthogonal projection.

(b) If \(-i\pi \notin \sigma_p(A) \) then \(AB = BA \) and \((1/2\pi i)(A - B) \) is an orthogonal projection.

(c) If \(-i\pi \notin \sigma_p(A) \) and \(i\pi \notin \sigma_p(A) \) then \(A = B \).

(d) If \(-i\pi \notin \sigma_p(A) \) and \(-i\pi \notin \sigma_p(B) \) then \(A = B \).

(e) If \(i\pi \notin \sigma_p(A) \) and \(i\pi \notin \sigma_p(B) \) then \(A = B \).

Proof. Let \(C = A - B \).

(a) Theorem 2 gives \(AB = BA \), hence \(e^C = I \). Use Proposition 5 to see that \(C \) is normal. Define the polynomial \(p \) by \(p(z) = z(z + 2\pi i)(z - 2\pi i) \). Then \(p(C) \) is normal and therefore
\[
\|p(C)\| = r(p(C)) \quad (15)
\]

Now take \(\lambda \in \sigma(C) \). Since \(e^C = I \), \(\lambda = 2j\pi i \) for some \(j \in \mathbb{Z} \). Thus
\[
2|j|\pi = |\lambda| \leq \|C\| \leq \|A\| + \|B\| = r(A) + r(B) \leq 2\pi,
\]
hence \(j \in \{0, \pm1\} \), thus \(\sigma(C) \subseteq \{0, 2\pi i, -2\pi i\} \). The spectral mapping theorem gives now
\[
\sigma(p(C)) = p(\sigma(C)) = \{0\}.
\]
hence, by (15),
\[(C - 2\pi i)(C + 2\pi i)C = 0.\] (16)
Since \(N(A - i\pi) = \{0\}\), we see from Proposition 5(b) and (16) that \(C^2 = -2\pi iC\). Put \(P = -(1/2\pi i)C\). Then \(P^2 = P\), thus \(P\) is a projection. It remains to show that \(P = P^*\). But this follows from Corollary 2, since
\[
P^* = \frac{1}{2\pi i}(A^* - B^*) = -\frac{1}{2\pi i}(A - B) = P.
\]
(b) If \(-\pi \notin \sigma_p(A)\) then \(\pi \notin \sigma_p(-A)\). Since \(e^{-A} = e^{-B}\), (a) shows that \(-1/2\pi i\)
\((-A - (-B)) = (1/2\pi i)(A - B)\) is an orthogonal projection.
(c) From (a) and (b) we conclude that \(-2\pi iC = C^2 = 2\pi iC\), hence \(C = 0\).
(d) From (b) we get \(C^2 = 2\pi iC\). Use (b) with \(B\) instead of \(A\) to derive \(C^2 = (B - A)^2 = (1/2\pi i)(B - A) = -2\pi iC\). Hence \(C = 0\).
(e) is now clear.

Remark. Theorem 5 generalizes Satz 4 in [7].

For our final result in this paper we return to the situation of Theorem 3.

Theorem 6. Suppose that \(A \in \mathcal{L}(H)\) is normal, \(B \in \mathcal{L}(H)\), \(e^A = e^B\) and \(\sigma(A)\) satisfies \((11)\) and \((12)\). Then we have:

(a) \(A^{2n}B = BA^{2n}\) for all \(n \in \mathbb{N}\).

(b) \(A^{2n+1}B - BA^{2n+1} = A^{2n}(AB - BA) = (-1)^n \pi^{2n}(AB - BA)\) for all \(n \in \mathbb{N}\).

(c) \(e^{2B}(AB - BA) = e^{2B}(AB - BA) = AB - BA\).

(d) If \(AB \neq BA\) then there is some \(k \in \mathbb{Z}\) such that \(k\pi \in \sigma_p(B)\).

Proof. (a) Follows from Theorem 3.

(b) As in the proof of Theorem 2 there are operators \(C \in N(\delta_A + 2\pi i)\) and \(D \in N(\delta_A - 2\pi i)\) such that \(AB - BA = C + D\), \(AC = i\pi C\) and \(DA = i\pi D\). It follows that
\[
i\pi(AB - BA) = i\pi C + i\pi D = AC + DA
= AC + AD + 2\pi iD
= A(AB - BA) + 2\pi iD,
\]
thus
\[
(A - i\pi)(AB - BA) = -2\pi iD.
\]
Since \(D(A - i\pi) = 0\),
\[
(A - i\pi)(AB - BA)(A - i\pi) = 0.
\]
This and
\[
A(AB - BA) = A^2B - ABA = BA^2 - ABA
= (BA - AB)A = -(AB - BA)A
\]
show that
\[0 = (A - i\pi)((-A - i\pi)(AB - BA)) = -(A^2 + \pi^2)(AB - BA), \]
hence
\[A^2(AB - BA) = -\pi^2(AB - BA). \tag{17} \]

Take \(n \in \mathbb{N} \). Then, by (a) and (17),
\[A^{2n+1}B - BA^{2n+1} = A^{2n+1}B - A^{2n}BA = A^{2n}(AB - BA) \]
\[= (-1)^n \pi^{2n}(AB - BA). \]

(c) Since (b) holds we get
\[\frac{1}{2}(e^A - e^{-A})(AB - BA) = \sinh(A)(AB - BA) \]
\[= \sum_{n=0}^{\infty} \frac{A^{2n+1}(AB - BA)}{(2n+1)!} \]
\[= A \sum_{n=0}^{\infty} \frac{A^{2n}(AB - BA)}{(2n+1)!} \]
\[= A \sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}(AB - BA)}{(2n+1)!} \]
\[= \frac{A}{\pi} \left(\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{(2n+1)!} \right)(AB - BA) \]
\[= \frac{\sin \pi}{\pi} A(AB - BA) = 0. \]

Thus \(e^A(AB - BA) = e^{-A}(AB - BA) \). From \(e^A = e^B \) we then derive
\[e^{2B}(AB - BA) = e^{2A}(AB - BA) = AB - BA. \]

(d) Suppose that \(AB \neq BA \). From (c) we see that \(1 \in \sigma_p(e^{2B}) \). The spectral mapping theorem for the point spectrum ([6, Theorem 10.33]) shows that there is \(\lambda \in \sigma_p(B) \) such that \(e^{2\lambda} = 1 \), hence \(2\lambda = 2k\pi i \) for some \(k \in \mathbb{Z} \). This gives \(k\pi i \in \sigma_p(B) \). \(\square \)

Corollary 3. Suppose that \(A \in \mathcal{L}(\mathcal{H}) \) is normal, \(B \in \mathcal{L}(\mathcal{H}) \), \(e^A = e^B \), \(\sigma(A) \) satisfies (11) and (12) and \(\sigma(B) \) satisfies
\[\sigma_p(B) \cap \{k\pi i : k \in \mathbb{Z}\} = \emptyset \]
then \(AB = BA. \)
References