APPLICATION OF THE MEAN ERGODIC THEOREM TO CERTAIN SEMIGROUPS

Gerd Herzog and Christoph Schmoeger

Abstract. We study the asymptotic behaviour of solutions of the Cauchy problem
\[u'(t) = (\sum_{j=1}^{n} (A_j + A_j^{-1}) - 2nI)u, \quad u(0) = x \text{ as } t \to \infty, \]
for invertible isometries \(A_1, \ldots, A_n \).

1. Introduction

Let \(E \) be a complex Banach space, \(L(E) \) the Banach algebra of all bounded linear operators on \(E \), and let \(A_1, \ldots, A_n \in L(E) \) be invertible, pairwise commuting, and such that \(\|A_k\| = \|A_k^{-1}\| = 1 \) (\(k = 1, \ldots, n \)). Let \(T_1, \ldots, T_n \in L(E) \) be defined by \(T_k = A_k + A_k^{-1} - 2I \), and let \(T = T_1 + \cdots + T_n \). The aim of this paper is to clear the asymptotic behaviour of the Cauchy problem
\[u'(t) = Tu(t), \quad u(0) = u_0 \]
that is of \(t \to \exp(tT)u_0 \) for \(t \to \infty \). Such problems occur in a natural way by semidiscretization of the parabolic Cauchy problem \(v_t = \Delta v, \quad v(0, x) = v_0(x) \): For example, if \(v_0 : \mathbb{R}^n \to \mathbb{R} \) is bounded, the longitudinal line method, see for example [4], with step size 1 leads to a linear Cauchy problem of type (1.1) in \(l^\infty(\mathbb{Z}^n) \) with
\[A_k x = (x(j_1, j_2, \ldots, j_{k-1}, j_k + 1, j_{k+1}, \ldots, j_n))_{j \in \mathbb{Z}^n}. \]
The corresponding problem for the heat equation was studied in [1].

2. Notations and preliminaries

For \(A \in L(E) \) let \(N(A) \), \(A(E) \), \(\sigma(A) \) and \(r(A) \) denote the kernel, the range, the spectrum and the spectral radius of \(A \), respectively. Let \(\mathbb{D} \) denote the complex unit circle \(\{ z \in \mathbb{C} : |z| < 1 \} \).

Proposition 2.1. Let \(A \in L(E) \), \(0 \notin \sigma(A) \) and \(\|A\| = \|A^{-1}\| = 1 \). Then:
(1) \(A \) is an isometry;

2000 Mathematics Subject Classification. Primary 34G10; Secondary 47A35.
(2) \(\|A^n\| = \|A\|^n = 1 \) (\(n \in \mathbb{N} \)), hence \(A \) is normaloid;
(3) \(r(A) = 1 \) and \(\sigma(A) \subseteq \partial \mathbb{D} \);
(4) \(N(A - I) \cap (A - I)(E) = \{0\} \);
(5) \((A - I)(E) = (A^{-1} - I)(E) \);
(6) \(N(A - I) = N((A - I)^2) \);
(7) \(N(A - I) \oplus (A - I)(E) \) is closed;
(8) if \((A - I)(E) \) is closed then \(E = N(A - I) \oplus (A - I)(E) \).

Proof. (1) and (2) are obvious.

(3): From (2) we get \(r(A) = 1 \). Next, it is clear that

\[\sigma(A) \cup \sigma(A^{-1}) \subseteq \overline{\mathbb{D}}. \]

Since \(\sigma(A) = \{ z \in \mathbb{C} : z^{-1} \in \sigma(A^{-1}) \} \), we conclude \(\sigma(A) \subseteq \partial \mathbb{D} \).

(4): Let \(x \in N(A - I) \cap (A - I)(E) \), let \(\varepsilon > 0 \) and choose \(z \in E \) such that \(\|x - (A - I)z\| < \varepsilon \). According to [2, Satz 102.3], we have \(\|x\| \leq \|x - (A - I)z\| < \varepsilon \), hence \(x = 0 \).

(5): Follows from \((A - I)x = (I - A^{-1})(Ax) \).

(6): Follows from [2, Satz 102.3].

(7): Choose a sequence \((x_n) \) in \(N(A - I) \oplus (A - I)(E) \) with \(x_n \to x_0 \) and corresponding decompositions \(x_n = y_n + z_n \). According to [2, Satz 102.3] we have

\[\|y_n - y_m\| \leq \|x_n - x_m\| \quad (n, m \in \mathbb{N}), \]

hence \((y_n) \) is convergent to a vector \(y_0 \in N(A - I) \). Thus

\[z_n = x_n - y_n \to x_0 - y_0 \in (A - I)(E), \]

and therefore \(x_0 \in N(A - I) \oplus (A - I)(E) \).

(8): Follows from [2, Satz 72.4 and 102.4]. \(\square \)

Proposition 2.2. Let \(A \in L(E) \) be as in Proposition 2.1, let \(T = A + A^{-1} - 2I \), and let \(c : [0, \infty) \to \mathbb{R} \) denote the function

\[c(t) = \exp(-t) \left(1 + \sum_{n=0}^{\infty} \frac{tn^n}{n!} \right) \left(1 - \frac{t}{n + 1} \right). \]

We have

(1) \(\|\exp(Tt)\| \leq 1 \) (\(t \geq 0 \));
(2) \(t \mapsto \sqrt{t}c(t) \) is bounded on \([0, \infty)\) and

\[\|\exp(Tt)(A - I)x\| \leq c(t)\|x\| \quad (t \geq 0, \ x \in E); \]
(3) \(\lim_{t \to \infty} \exp(Tt)y = 0 \) (\(y \in (A - I)(E) \));
(4) if \(y \in E \) then

\[\lim_{t \to \infty} \exp(Tt)y = 0 \iff y \in (A - I)(E); \]
(5) \(N(A - I) = \{ x \in E : \exp(Tt)x = x \ (t \geq 0) \} \).
Proof. (1): For each $t \geq 0$

\[
\| \exp(tT) \| = \| \exp(-2t) \exp(tA) \exp(tA^{-1}) \| \\
\leq \exp(-2t) \exp(t\|A\|) \exp(t\|A^{-1}\|) = 1.
\]

(2): Since $T = (A^{-1} - I) + (A - I)$ we have

\[
\exp(tT)(A - I) = \exp(t(A^{-1} - I)) \exp(t(A - I))(A - I) \quad (t \in \mathbb{R}),
\]

and

\[
\exp(t(A - I))(A - I)x = \exp(-t) \sum_{n=0}^{\infty} \frac{t^n}{n!} (A^{n+1} - A^n)x
\]

\[
= \exp(-t) \left(\sum_{n=0}^{\infty} \frac{t^n}{n!} \left(1 - \frac{t}{n+1} \right) \right) A^{n+1}x - \exp(-t)x.
\]

Hence, since $\|A\| = 1$,

\[
\| \exp(tT)(A - I)x \| \leq \| \exp(t(A^{-1} - I)) \| \| \exp(t(A - I))(A - I)x \|
\]

\[
\leq c(t)\|x\| \quad (t \geq 0, \ x \in E).
\]

To see that $t \mapsto \sqrt{tc(t)}$ is bounded on $[0, \infty)$ let $N \in \mathbb{N}$ and $N \leq t \leq N + 1$. Then

\[
\sum_{n=0}^{\infty} \frac{t^n}{n!} \left| 1 - \frac{t}{n+1} \right| = \sum_{n=0}^{N-1} \frac{t^n}{n!} \left(1 - \frac{t}{n+1} \right) + \sum_{n=N}^{\infty} \frac{t^n}{n!} \left(1 - \frac{t}{n+1} \right)
\]

\[
= 2 \frac{t^N}{N!} - 1,
\]

and therefore

\[
\sqrt{tc(t)} = \sqrt{t} \exp(-t) \left(1 + \sum_{n=0}^{\infty} \frac{t^n}{n!} \left| 1 - \frac{t}{n+1} \right| \right)
\]

\[
\leq \sqrt{N + 1} \exp(-N) \left(1 + 2 \frac{(N+1)^N}{N!} - 1 \right)
\]

\[
= 2 \frac{(N+1)^{N+1/2}}{N!} \exp(-N),
\]

which is bounded according to Stirling’s formula.

(3): Follows from (2).

(4): The implication \Leftarrow follows from (3). Now suppose that $\exp(tT)y \to 0$ as $t \to \infty$. Since

\[
\exp(tT)y = y + \sum_{n=1}^{\infty} \frac{t^n}{n!} T^n y
\]

\[
= y + (A - I) \sum_{n=1}^{\infty} \frac{t^n}{n!} (A - I)^{n-1} (I - A^{-1})^n y
\]

we conclude $y \in (A - I)(E)$.

(5): The inclusion

\[
N(A - I) \subseteq \{ x \in E : \exp(tT)x = x \quad (t \geq 0) \}
\]
is obvious. Now suppose that \(x \in E \) and \(\exp(tT)x = x \ (t \geq 0) \). By differentiation
\(0 = T \exp(tT)x \ (t \geq 0) \), thus \(A^{-1}(A - I)^2x = Tx = 0 \). Part (6) of Proposition 2.1
now shows that \(x \in N(A - I) \).

\[
\begin{align*}
\text{3. The asymptotic behaviour of } \exp(tT) \\
\text{Theorem 3.1. Let } A \text{ and } T \text{ be as in Proposition 2.1. For } x \in E \text{ the following}
\text{assertions are equivalent:} \\
(1) \lim_{t \to \infty} \exp(tT)x \text{ exists in } E \ [\text{resp. } \lim_{t \to \infty} \exp(tT)x = 0]; \\
(2) x \in N(A - I) \oplus (A - I)(E) \ [\text{resp. } x \in (A - I)(E)]; \\
(3) \text{the sequence} \left(x + Ax + \cdots + A^mx \right)_{m \in \mathbb{N}} \\
\text{is convergent} \ [\text{resp. is convergent with limit } 0].
\end{align*}
\]

\text{Proof. That (2) implies (1) follows from Proposition 2.2. Now, assume that (1) holds, and let } \(z = \lim_{t \to \infty} \exp(tT)x \). \text{As in the proof of part (4) of Proposition 2.2}
\[\exp(tT)x = x + (A - I) \sum_{n=1}^{\infty} \frac{t^n}{n!} (A - I)^{n-1}(I - A^{-1})^nx, \]
hence \(x - z \in (A - I)(E) \). [In particular, if \(z = 0 \) then \(x \in (A - I)(E) \).] From
part (3) of Proposition 2.2 we obtain
\[(A - I)z = \lim_{t \to \infty} \exp(tT)(A - I)x = 0, \]
and therefore \(x = z + (x - z) \in N(A - I) \oplus (A - I)(E) \).
The equivalence of (2) and (3) is proved in [3, Ch.2, Theorem 1.3]. \(\square \)

According to part (8) of Proposition 2.1 the following corollary shows, that
\(\lim_{t \to \infty} \exp(tT)x \) exists for each \(x \in E \) if \(T(E) \) is closed:

\text{Corollary 3.1. We have}
\[(1) T(E) = (A - I)^2(E) \subseteq (A - I)(E) \subseteq \overline{T(E)}; \]
\[(2) T(E) = \overline{T(E)} \iff (A - I)^2(E) = (A - I)(E) \iff (A - I)(E) = \overline{(A - I)(E)}. \]

\text{Proof. (1): Part (5) of Proposition 2.1 gives}
\[T(E) = (A - I)^2(E) \subseteq (A - I)(E). \]
As in the proof of Theorem 3.1 we obtain \((A - I)(E) \subseteq \overline{T(E)} \). Now, (2) follows by
[2, Satz 102.4]. \(\square \)
4. The general case

Now, let $A_1, \ldots, A_n, T_1, \ldots, T_n$ and T be as in section 1. Moreover we introduce the following subspaces of E:

$$X_1 = \bigcap_{j=1}^{n} N(A_j - I), \quad X_2 = \sum_{j=1}^{n} (A_j - I)(E), \quad X = X_1 + X_2.$$

Theorem 4.1. Under the assumptions above

1. $X_2 = \{x \in E : \lim_{t \to \infty} \exp(tT)x = 0\}$;
2. $X_1 = \{x \in E : \exp(tT)x = x \ (t \geq 0)\}$;
3. $X = \{x \in E : \lim_{t \to \infty} \exp(tT)x \text{ exists in } E\}$;
4. $X_1 \cap X_2 = \{0\}$, and X is closed.

Proof. (1): Let $x \in X_2$. Then $x = \lim_{m \to \infty} x_m$ where $x_m \in \sum_{j=1}^{n} (A_j - I)(E)$.

By part (1) and part (3) of Proposition 2.2 we obtain $\lim_{t \to \infty} \exp(tT)x_m = 0 \ (m \in \mathbb{N})$.

Let $\varepsilon > 0$, and choose $N \in \mathbb{N}$ such that $\|x - x_N\| < \varepsilon/2$. Next, choose $t_0 \in [0, \infty)$ such that $\|\exp(tT)x_N\| < \varepsilon/2 \ (t \geq t_0)$. Then

$$\|\exp(tT)x\| = \|\exp(tT)(x - x_N) + \exp(tT)x_N\| \leq \|x - x_N\| + \|\exp(tT)x_N\| < \varepsilon \ (t \geq t_0).$$

Thus $\lim_{t \to \infty} \exp(tT)x = 0$.

Now suppose that $x \in E$ and $\lim_{t \to \infty} \exp(tT)x = 0$. Set

$$h(t) = \sum_{n=1}^{\infty} \frac{t^n}{n!} T^n x.$$

Since $T_j = (A_j - I)(I - A_j^{-1}) \ (j = 1, \ldots, n)$, we have

$$Tx = \sum_{j=1}^{n} (A_j - I)(I - A_j^{-1})x \in \sum_{j=1}^{n} (A_j - I)(E),$$

hence

$$h(t) \in \sum_{j=1}^{n} (A_j - I)(E).$$

Thus, $\exp(tT)x = x + h(t)$ and $\lim_{t \to \infty} \exp(tT)x = 0$ imply $x \in X_2$.

(2): The inclusion \subseteq is obvious. For the reversed inclusion let $x \in E$ be such that $\exp(tT)x = x \ (t \geq 0)$. Then by part (1) we obtain

$$x = (A_j - I)x = \exp(tT)(A_j - I)x \to 0 \ (t \to \infty) \ (j = 1, \ldots, n).$$
hence \(x \in X_1 \).

(3): Here, the inclusion \(\subseteq \) follows from parts (1) and (2) directly. Now, assume that \(x \in E \) is such that \(\lim_{t \to \infty} \exp(tT)x = z \). As in the proof of part (1)

\[
\exp(tT)x = x + h(t), \quad h(t) \in X_2.
\]

Therefore \(x - z \in X_2 \). From part (1) we derive

\[
(A_j - I)z = \lim_{t \to \infty} \exp(tT)(A_j - I)x = 0 \quad (j = 1, \ldots, n).
\]

Thus \(z \in X_1 \), and so \(x = z + (x - z) \in X_1 \oplus X_2 = X \).

(4): Let \(x \in X_1 \cap X_2 \). Then, by parts (1) and (2), we have

\[
\exp(tT)x = x \quad (t \geq 0), \quad \exp(tT)x \to 0 \quad (t \to \infty),
\]

thus \(x = 0 \). Next, if \((x_m)\) is a sequence in \(X \) with limit \(x_0 \), then there exist sequences \((y_m)\) and \((z_m)\) in \(X_1 \) and \(X_2 \), respectively, with \(x_m = y_m + z_m \). From part (1) and part (2) we obtain

\[
\exp(tT)(x_m - x_k) \to y_m - y_k \quad (t \to \infty).
\]

Since \(\|\exp(tT)(x_m - x_k)\| \leq \|x_m - x_k\| \quad (t \geq 0) \), we have

\[
\|y_m - y_k\| \leq \|x_m - x_k\|,
\]

thus \((y_m)\) is convergent. Let \(y_0 = \lim_{m \to \infty} y_m \). Then \(z_m = x_m - y_m \to x_0 - y_0 \). Hence we have \(y_0 \in X_1 \), \(x_0 - y_0 \in X_2 \), and therefore \(x_0 \in X_1 \oplus X_2 = X \). \(\square \)

The following result provides sufficient conditions for the convergence of \(\exp(tT)x \).

Theorem 4.2. Let \((k_1, \ldots, k_n) \in \mathbb{N}_0^n \), and set \(B = A_1^{k_1} \cdots A_n^{k_n} \). We have

1. \(\bigcap_{j=1}^n \left(N(A_j - I) \oplus (A_j - I)(E) \right) \subseteq X \);
2. \((B - I)(E) \subseteq X_2 \);
3. if \(x \in E \) and if the sequences

\[
\left(\frac{x + A_jx + \cdots + A_j^mx}{m+1} \right)_{m \in \mathbb{N}}
\]

are convergent \((j = 1, \ldots, n)\), then \(\lim_{t \to \infty} \exp(tT)x \) exists in \(E \);
4. if \(x \in E \) and if the sequence

\[
\left(\frac{x + Bx + \cdots + B^mx}{m+1} \right)_{m \in \mathbb{N}}
\]

is convergent to 0 in \(E \), then \(\lim_{t \to \infty} \exp(tT)x = 0 \).

Proof. According to Theorem 3.1 we see that (3) follows from (1), and (4) follows from (2).

For the proof of (1) we use induction. If \(n = 1 \) the result follows by Theorem 3.1.
Suppose that \(n \in \mathbb{N} \) and that (1) holds. In the case of \(n + 1 \) operators \(T_1, \ldots, T_{n+1} \) we write \(T_0 = T_1 + \cdots + T_n \), so \(T = T_0 + T_{n+1} \). Let
\[
x \in \bigcap_{j=1}^{n+1} \left(N(A_j - I) \oplus (A_j - I)(E) \right).
\]
then
\[
x \in \bigcap_{j=1}^{n} \left(N(A_j - I) \oplus (A_j - I)(E) \right), \quad x \in N(A_{n+1} - I) \oplus (A_{n+1} - I)(E),
\]
and therefore the limits \(\lim_{t \to \infty} \exp(tT_0)x \) and \(\lim_{t \to \infty} \exp(tT_{n+1})x \) exist in \(E \).

From
\[
\| \exp(tT)x - \exp(sT)x \| = \| \exp(tT_0) \exp(tT_{n+1})x - \exp(sT_0) \exp(sT_{n+1})x \|
\]
\[
= \| \exp(tT_0) (\exp(tT_{n+1}) - \exp(sT_{n+1}))x + \exp(sT_{n+1}) (\exp(tT_0) - \exp(sT_0))x \|
\]
\[
\leq \| \exp(tT_{n+1})x - \exp(sT_{n+1})x \| + \| \exp(tT_0)x - \exp(sT_0)x \|
\]
we see that \(\lim_{t \to \infty} \exp(tT)x \) exists.

Next, we prove (2) for \((k_1, \ldots, k_n) \in \mathbb{N}^n \), without loss of generality. Let \(p(z) = z_1^{k_1} \cdots z_n^{k_n} - 1 \ (z = (z_1, \ldots, z_n)) \), and note that there are polynomials \(q_1, \ldots, q_n \in \mathbb{C}[z_1, \ldots, z_n] \) such that
\[
p(z) = (z_1 - 1)q_1(z) + \cdots + (z_n - 1)q_n(z).
\]
Hence
\[
(B-I)x \in \sum_{j=1}^{n} (A_j - I)(E) \quad (x \in E),
\]
and therefore \((B-I)(E) \subseteq X_2 \).

5. Example

Let us return to the semidiscretization of \(v_t = \Delta v \) in \(\mathbb{R}^2 \), that is we consider \(E = l^\infty(\mathbb{Z}^2) \) and
\[
A_1x = (x(i + 1, j))(i,j) \in \mathbb{Z}^2, \quad A_2x = (x(i, j + 1))(i,j) \in \mathbb{Z}^2.
\]
Let \(k_1, k_2 \in \mathbb{N} \), and assume that \(x \in l^\infty(\mathbb{Z}^2) \) is such that the sequence
\[
\left(\frac{x(i, j) + x(i + k_1, j + k_2) + \cdots + x(i + mk_1, j + mk_2)}{m + 1} \right)_{(i,j) \in \mathbb{Z}^2}
\]
tends to 0 as \(m \to \infty \) in \(l^\infty(\mathbb{Z}^2) \). Then
\[
\exp(tT)x \to 0 \quad (t \to \infty)
\]
(apply part (4) of Theorem 4.2 with \(B = A_1^{k_1} A_2^{k_2} \)).
References

Institut für Analysis, Universität Karlsruhe, 76128 Karlsruhe, Germany
E-mail address: Gerd.Herzog@math.uni-karlsruhe.de

Institut für Analysis, Universität Karlsruhe, 76128 Karlsruhe, Germany
E-mail address: christoph.schmoeger@math.uni-karlsruhe.de