DRAZIN INVERSES OF OPERATORS WITH RATIONAL RESOLVENT

CHRISTOPH SCHMOEGER

ABSTRACT. Let A be a bounded linear operator on a Banach space such that the resolvent of A is rational. If 0 is in the spectrum of A, then it is well-known that A is Drazin invertible. In this paper we investigate spectral properties of the Drazin inverse of A. For example we show that the Drazin inverse of A is a polynomial in A.

1. Introduction and Terminology

In this paper X is always a complex Banach space and $\mathcal{L}(X)$ the Banach algebra of all bounded linear operators on X. For $A \in \mathcal{L}(X)$ we write $N(A)$ for its kernel and $A(X)$ for its range. We write $\sigma(A)$, $\rho(A)$ and $R_\lambda(A)$ for the spectrum, the resolvent set and the resolvent operator $(A - \lambda)^{-1}$ of A, respectively. The ascent of A is denoted by $\alpha(A)$ and the descent of A is denoted by $\delta(A)$.

An operator $A \in \mathcal{L}(X)$ is Drazin invertible if there is $C \in \mathcal{L}(X)$ such that

(i) $CAC = C$,
(ii) $AC = CA$

and

(iii) $A^\nu+1C = A^\nu$ for some nonnegative integer ν.

In this case C is uniquely determined (see [2]) and is called the Drazin inverse of A. The smallest nonnegative integer ν such that (iii) holds is called the index $i(A)$ of A. Observe that

$0 \in \rho(A) \iff A$ is Drazin invertible and $i(A) = 0$.

The following proposition tells us exactly which operators are Drazin invertible with index > 0:

1.1. Proposition. Let $A \in \mathcal{L}(X)$ and let ν be a positive integer. Then the following assertions are equivalent:

1. A is Drazin invertible and $i(A) = \nu$.
2. $\alpha(A) = \delta(A) = \nu$.
3. $R_\lambda(A)$ has a pole of order ν at $\lambda = 0$.

Proof. [2, §5.2] and [3, Satz 101.2].

The next result we will use frequently in our investigations.

1.2. Proposition. Suppose that $A \in \mathcal{L}(X)$ is Drazin invertible, $i(A) = \nu \geq 1$, P is the spectral projection of A associated with the spectral set $\{0\}$ and that C is the Drazin inverse of A. Then

1. $P = I - AC$,
2. $N(C) = N(A^\nu) = P(X)$,
3. $C(X) = N(P) = A^\nu(X)$,
4. C is Drazin invertible, $i(C) = 1$, ACA is the Drazin inverse of C,

Date: April 6, 2006.
2000 Mathematics Subject Classification. 47A10.
Key words and phrases. rational resolvent, Drazin inverse.
(3) $0 \in \sigma(C)$ and $\sigma(C) \setminus \{0\} = \{ \frac{1}{\lambda} : \lambda \in \sigma(A) \setminus \{0\} \}$.

Proof. We have $P = I - AC$, $N(A^\nu) = P(X)$ and $\sigma(C) \setminus \{0\} = \{ \frac{1}{\lambda} : \lambda \in \sigma(A) \setminus \{0\} \}$ by [2, § 5.2]. It is clear that $0 \in \sigma(C)$. From Proposition 1.1 and [3, Satz 101.2] we get $N(P) = A^\nu(X)$. If $x \in X$ then $Cx = 0 \Leftrightarrow Px = x$, hence $N(C) = P(X)$. From $P = I - AC = I - CA$ it is easily seen that $N(P) = C(X)$, Let $B = ACA$. Then

$$CBC = CACAC = CAC = C, \quad CB = CACA = ACAC = BC$$

and

$$BCB = ACACACA = ACACA = ACA = B.$$

This shows that C is Drazin invertible, B is the Drazin inverse of C and that $i(C) = 1$. \hfill \Box

Now we introduce the class of operators which we will consider in this paper. We say that $A \in \mathcal{L}(X)$ has a rational resolvent if

$$R_\lambda(A) = \frac{P(\lambda)}{q(\lambda)}$$

where $P(\lambda)$ is a polynomial with coefficients in $\mathcal{L}(X)$, $q(\lambda)$ is polynomial with coefficients in \mathbb{C} and where P and q have no common zeros.

We use the symbol $\mathcal{F}(X)$ to denote the subclass of $\mathcal{L}(X)$ consisting of those operators whose resolvent is rational.

For $A \in \mathcal{L}(X)$ let $\mathcal{H}(A)$ be the set of all functions $f : \triangle(f) \to \mathbb{C}$ such that $\triangle(f)$ is an open set in \mathbb{C}, $\sigma(A) \subseteq \triangle(f)$ and f is holomorphic on $\triangle(f)$. For $f \in \mathcal{H}(A)$ the operator $f(A) \in \mathcal{L}(X)$ is defined by the usual operational calculus (see [3] or [4]).

The following proposition collects some properties of operators in $\mathcal{F}(X)$. An operator $A \in \mathcal{L}(X)$ is called algebraic if $p(A) = 0$ for some nonzero polynomial p.

1.3. Proposition. Let $A \in \mathcal{L}(X)$.

(1) $A \in \mathcal{F}(X)$ if and only if $\sigma(A)$ consists of a finite number of poles of $R_\lambda(A)$.

(2) $A \in \mathcal{F}(X)$ if and only if A is algebraic.

(3) If $\dim A(X) < \infty$, then $A \in \mathcal{F}(X)$.

(4) If $A \in \mathcal{F}(X)$ and $f \in \mathcal{H}(A)$, then $f(A) = p(A)$ for some polynomial p.

(5) If $A \in \mathcal{F}(X)$, the $p(A) \in \mathcal{F}(X)$ for every polynomial p.

Proof. [4, Chapter V. 11] \hfill \Box

1.4. Corollary. Suppose that $A \in \mathcal{F}(X)$ and $0 \in \rho(A)$. Then $A^{-1} \in \mathcal{F}(X)$ and A^{-1} is a polynomial in A.

Proof. Define the function $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ by $f(\lambda) = \lambda^{-1}$. Then $f \in \mathcal{H}(A)$ and $f(A) = A^{-1}$. Now apply Proposition 1.3 (4) and (5). \hfill \Box

Remark. That $A \in \mathcal{F}(X)$ and $0 \in \rho(A)$ implies $A^{-1} \in \mathcal{F}(X)$ is also shown in [1, Theorem 2]. In Section 2 of the present paper we will give a further proof of this fact.
2. Drazin inverses of operators in $\mathcal{F}(X)$

Throughout this section A will be an operator in $\mathcal{F}(X)$ and $\sigma(A) = \{\lambda_1, \ldots, \lambda_k\}$, where $\lambda_1, \ldots, \lambda_k$ are the distinct poles of $R_\lambda(A)$ of orders m_1, \ldots, m_k (see Proposition 1.3 (1)).

Recall that

$$m_j = \alpha(A - \lambda_j) = \delta(A - \lambda_j) \ (j = 1, \ldots, k).$$

Let

$$m_A(\lambda) = (\lambda - \lambda_1)^{m_1} \cdots (\lambda - \lambda_k)^{m_k}. \tag{2.1}$$

By [4, Theorem V. 10.7],

$$m_A(A) = 0.$$

The polynomial m_A is called the minimal polynomial of A. It follows from [4, Theorem V. 10.7] that m_A divides any other polynomial p such that $p(A) = 0$. In what follows we always assume that m_A has degree n, thus $n = m_1 + \cdots + m_k$ and that m_A has the representations (2.1) and

$$m_A(\lambda) = a_0 + a_1 \lambda + a_2 \lambda^2 + \cdots + a_{n-1} \lambda^{n-1} + \lambda^n. \tag{2.2}$$

Observe that

$$0 \in \rho(A) \iff a_0 \neq 0$$

and that

$$0 \text{ is a pole of order } \nu \geq 1 \text{ of } R_\lambda(A) \iff a_0 = \cdots = a_{\nu - 1} = 0 \text{ and } a_\nu \neq 0.$$

Now we are in a position to state our first result. Recall from Proposition 1.1 that if $\lambda_0 \in \sigma(A)$, then $A - \lambda_0$ is Drazin invertible.

2.1. Theorem. If $\lambda_0 \in \sigma(A)$ and if C is the Drazin inverse of $A - \lambda_0$, then there is a scalar polynomial p such that $C = p(A)$.

Proof. Without loss of generality we can assume that $\lambda_0 = \lambda_1 = 0$. Let $\nu = m_1$. Then we have

$$m_A(\lambda) = a_\nu \lambda^\nu + a_{\nu+1} \lambda^{\nu+1} + \cdots + a_{n-1} \lambda^{n-1} + \lambda^n$$

and that $a_\nu \neq 0$. Let

$$q_1(\lambda) = -\frac{1}{a_\nu}(a_{\nu+1} + a_{\nu+2} \lambda + \cdots + \lambda^{n-(\nu+1)}).$$

Then

$$A^{\nu + 1}q_1(A) = -\frac{1}{a_\nu}(a_{\nu+1} A^{\nu+1} + a_{\nu+2} A^{\nu+2} + \cdots + A^{n})$$

$$= -\frac{1}{a_\nu}(m_A(A) - a_\nu A^{\nu}) = A^{\nu}.$$

Let $B = q_1(A)$. Then $A^{\nu + 1}B = A^{\nu}$ and $BA = AB$. For the Drazin inverse C we have

$$A^{\nu + 1}C = A, \ CAC = C \quad \text{and} \quad CA = AC.$$

Thus

$$A^{\nu + 1}(B - C) = A^{\nu + 1}B - A^{\nu + 1}C = A^{\nu} - A^{\nu} = 0$$

3
This shows that \((B - C)(X) \subseteq N(A^{\nu+1})\). By Proposition 1.1, \(\alpha(A) = \nu\), thus \((B - C)(X) \subseteq N(A^{\nu})\), therefore \((B - C)(X) \subseteq P_{1}(X)\), where \(P_{1}\) denotes the spectral projection of \(A\) associated with the spectral set \(\{0\}\) (see Proposition 1.2). Since \(P_{1} = I - AC = I - CA\), it follows that
\[
B - C = P_{1}(B - C) = P_{1}B - P_{1}C = P_{1}B - (I - CA)C = P_{1}B - C + CAC = P_{1}B,
\]
thus
\[
C = B - P_{1}B.
\]
We have \(P_{1} = f(A)\) for some \(f \in \mathcal{H}(A)\). By Proposition 1.3 (4), \(f(A) = q_{2}(A)\) for some polynomial \(q_{2}\). Now define the polynomial \(p\) by \(P = q_{1} - q_{2}q_{1}\). It results that
\[
p(A) = q_{1}(A) - q_{2}(A)q_{1}(A) = B - P_{1}B = C.
\]
\[\square\]

2.2. Corollary. If \(\lambda_{0} \in \sigma(A)\) and if \(C\) is the Drazin inverse of \(A - \lambda_{0}\), then \(C \in \mathcal{F}(X)\).

Proof. Theorem 2.1 and Proposition 1.3 (5).

2.3. Corollary. Let \(A\) be a complex square matrix and \(\lambda_{0}\) a characteristic value of \(A\). Then the Drazin inverse of \(A - \lambda_{0}\) is a polynomial in \(A\).

Proof. Theorem 2.1 and Proposition 1.3 (3).

Let \(T \in \mathcal{L}(X)\). An operator \(S \in \mathcal{L}(X)\) is called a pseudo inverse of \(T\) provided that \(TST = T\). In general the set of all pseudo inverses of \(T\) is infinite and this set consists of all operators of the form
\[
STS + U - STUTS
\]
where \(U \in \mathcal{L}(X)\) is arbitrary (see \([2, \text{Theorem } 2.3.2]\)). Observe that if \(T\) is Drazin invertible with \(i(T) = 1\), then the Drazin inverse of \(T\) is a pseudo inverse of \(T\).

2.4. Corollary. If \(\lambda_{0} \in \sigma(A)\), then the following assertions are equivalent:

1. \(\lambda_{0}\) is a simple pole of \(R_{\lambda}(A)\);
2. there is a pseudo inverse \(B\) of \(A - \lambda_{0}\) such that
 \[
 B(A - \lambda_{0}) = (A - \lambda_{0})B;
 \]
3. there is a polynomial \(p\) such that \(p(A)\) is a pseudo inverse of \(A - \lambda_{0}\).

Proof. (1) \(\Leftrightarrow\) (2): Proposition 1.1.
(1) \(\Rightarrow\) (3): We can assume that \(\lambda_{0} = 0\). Let \(q_{1}\) and \(B\) as in the proof of Theorem 2.1. Then \(A^{2}B = A\) and \(AB = BA\), hence \(ABA = A\).
(3) \(\Rightarrow\) (1): Again we can assume that \(\lambda_{0} = 0\). With \(B = p(A)\) we have \(ABA = A\) and \(AB = BA\). Set \(C = BAB\), then
\[
ACA = A,\ CAC = C\quad\text{and}\quad AC = CA.
\]
This shows that \(C\) is the Drazin inverse of \(A\) and that \(i(A) = 1\). By Proposition 1.1, \(\lambda_{0} = 0\) is a simple pole of \(R_{\lambda}(A)\).

\[\square\]

2.5. Corollary. Let \(X\) be a complex Hilbert space and suppose that \(N \in \mathcal{L}(X)\) is normal and that \(\sigma(N)\) is finite. We have:

1. \(N \in \mathcal{F}(X)\),

\[\square\]
If $\lambda_0 \in \sigma(N)$, then there is a polynomial p such that
\[(N - \lambda_0)p(N)(N - \lambda_0) = N - \lambda_0.
\]

Proof. By [3, Satz 111.2], each point in $\sigma(N)$ is a simple pole of $R_\lambda(N)$, thus $N \in \mathcal{F}(X)$. Now apply Corollary 2.4.

Our results suggest the following

Question. If $A \in \mathcal{F}(X)$ and if B is a pseudo inverse such that $AB = BA$, does there exist a polynomial p with $B = p(A)$?

The answer is negative:

Example. Consider the square matrix
\[
A = \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}.
\]

It is easy to see that the minimal polynomial of A is given by $m_A(\lambda) = \lambda^2 - 3\lambda = \lambda(\lambda - 3)$, hence $\sigma(A) = \{0, 3\}$ and $A^2 = 3A$. Let
\[
B = \frac{1}{3} \begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}.
\]

Then $AB = BA = \frac{1}{3}A$, thus $ABA = \frac{1}{3}A^2 = A$, hence B is a pseudo inverse of A. Since $A^2 = 3A$, any polynomial in A has the form $\alpha I + \beta A$ with $\alpha, \beta \in \mathbb{C}$. But there are no α and β such that $B = \alpha I + \beta A$. An easy computation shows that the Drazin inverse of A is given by $\frac{1}{3}A$ and that $i(A) = 1$.

If 0 is a simple pole of $R_\lambda(A)$, then we have seen in Corollary 2.4 that A has a pseudo inverse. If 0 is a pole of $R_\lambda(A)$ of order ≥ 2, then, in general A does not have a pseudo inverse, as the following example shows.

Example. Let $T \in \mathcal{L}(X)$ be any operator with $T(X)$ not closed (of course X must be infinite dimensional). Define the operator $A \in \mathcal{L}(X \oplus X)$ by the matrix
\[
A = \begin{pmatrix}
0 & 0 \\
T & 0
\end{pmatrix}.
\]

Then the range of A is not closed. By [2, Theorem 2.1], A has no pseudo inverse. From $A^2 = 0$ it follows that $A \in \mathcal{F}(X \oplus X)$ and that 0 is a pole of order 2 of $R_\lambda(A)$.

Now we return to the investigations of our operator $A \in \mathcal{F}(X)$. To this end we need the following propositions.

2.6. Proposition. Suppose that $T \in \mathcal{L}(X)$, $0 \in \rho(T)$, $\lambda \in \mathbb{C} \setminus \{0\}$ and that k is a nonnegative integer. Then:

1. $N(T - \lambda)^k = N((T^{-1} - \frac{1}{\lambda})^k)$;
2. $\alpha(T - \lambda) = \alpha(T^{-1} - \frac{1}{\lambda})$.

Proof. We only have to show that $N((T - \lambda)^k \subseteq N((T^{-1} - \frac{1}{\lambda})^k)$. Take $x \in N((T - \lambda)^k)$. Then $0 = (T - \lambda)^k x$, thus $0 = (T^{-1})^k(T - \lambda)^k x = (1 - \lambda T^{-1})^k x$, hence $x \in N((T^{-1} - \frac{1}{\lambda})^k)$.

5
2.7. Proposition. Suppose that $T \in \mathcal{L}(X)$, $0 \in \sigma(T)$, $\lambda \in \mathbb{C} \setminus \{0\}$ and k is a nonnegative integer. Furthermore suppose that T is Drazin invertible and that C is the Drazin inverse of T. Then:

(1) $N((T - \lambda)^k) = N((C - \frac{1}{\lambda})^k)$;

(2) $\alpha(T - \lambda) = \alpha(C - \frac{1}{\lambda})$.

Proof. (2) follows from (1).

2.8. Proposition. Let $\nu = i(T)$. We use induction. First we show that $N(T - \lambda) = N(C - \frac{1}{\lambda})$.

Let $x \in N(T - \lambda)$, then $Tx = \lambda x$ and $T^\nu x = \lambda^\nu x$. We have

$$\lambda^2 C^2 x = C^2 Tx = CTCx = Cx,$$

hence $C(1 - \lambda C)x = 0$, thus $(1 - \lambda C)x \subseteq N(C)$. By Proposition 1.2, $N(C) = N(T^\nu)$, therefore

$$0 = T^\nu (1 - \lambda C)x = (1 - \lambda C)T^\nu x = (1 - \lambda C)\lambda^\nu x,$$

therefore $x \in N(C - \frac{1}{\lambda})$. Now let $x \in N(C - \frac{1}{\lambda})$. From $Cx = \frac{1}{\lambda}x$ we see that $x \in C(X) = N(P)$, where P is as in Proposition 1.2. From $P = I - TC$ we get $x = TCx = T(\frac{1}{\lambda}x)$, thus $Tx = \lambda x$, hence $x \in N(T - \lambda)$. Now suppose that n is a positive integer and that $N((T - \lambda)^n) = N((C - \frac{1}{\lambda})^n)$.

Take $x \in N((T - \lambda)^n+1)$. Then $(T - \lambda)x \in N((T - \lambda)^n) = N((C - \frac{1}{\lambda})^n)$, thus

$$0 = (C - \frac{1}{\lambda})^n(T - \lambda)x = (T - \lambda)(C - \frac{1}{\lambda})^n x.$$

This gives

$$(C - \frac{1}{\lambda})^n x \in N(T - \lambda) = N(C - \frac{1}{\lambda}),$$

therefore $x \in N((C - \frac{1}{\lambda})^{n+1})$. Similar arguments show that $N((C - \frac{1}{\lambda})^{n+1}) \subseteq N((T - \lambda)^{n+1})$. \qed

In what follows we use the notation of the beginning of this section.

Recall that we have $\sigma(A) = \{\lambda_1, \ldots, \lambda_k\}$. If $0 \in \sigma(A)$, then we always assume that $\lambda_1 = 0$, hence $\sigma(A) \setminus \{0\} = \{\lambda_2, \ldots, \lambda_k\}$.

2.9. Theorem. Suppose that $0 \in \rho(A)$.

(1) If the minimal polynomial m_A has the representation (2.1), then the minimal polynomial $m_{A^{-1}}$ of A^{-1} is given by

$$m_{A^{-1}}(\lambda) = (\lambda - \frac{1}{\lambda_1})^{m_1} \cdots (\lambda - \frac{1}{\lambda_k})^{m_k}.$$

(2) If the minimal polynomial m_A has the representation (2.2), then $m_{A^{-1}}$ is given by

$$m_{A^{-1}}(\lambda) = \frac{1}{a_0} + \frac{a_{n-1}}{a_0} \lambda + \cdots + \frac{a_1}{a_0} \lambda^{n-1} + \lambda^n.$$
Then multiplying (2.3) by C_q now define the polynomial q by

$$q(\lambda) = \frac{1}{a_0} + \frac{a_{n-1}}{a_0} \lambda + \cdots + \frac{a_1}{a_0} \lambda^{n-1} + \lambda^n.$$

Then

$$a_0 A^n q(A^{-1}) = A^n (a_0 (A^{-1})^n + a_1 (A^{-1})^{n-1} + \cdots + a_{n-1} A^{-1} + 1) = m_A(A) = 0.$$

Since $a_0 \neq 0$ and $0 \in \rho(A)$, it results that $q(A^{-1}) = 0$. Because of degree of $q = n = \deg m_A$, we get $q = m_A$. \hfill \Box

Remark. The proof just given shows that there is a polynomial q such that $q(A^{-1}) = 0$. Therefore we have a simple proof for the fact that $A^{-1} \in \mathcal{F}(X)$.

2.10. Theorem. Suppose that $0 \in \sigma(A)$ and that 0 is a pole of $R_\lambda(A)$ of order $\nu \geq 1$. Let C denote the Drazin inverse of A (recall from Corollary 2.2 that $C \in \mathcal{F}(X)$).

1. If m_A has the representation (2.1), then

$$m_C(\lambda) = \lambda (\lambda - \frac{1}{x_2})^{m_2} \cdots (\lambda - \frac{1}{x_k})^{m_k}.$$

2. If m_A has the representation (2.2), then

$$m_C(\lambda) = \frac{1}{a_\nu} \lambda + \frac{a_{\nu-1}}{a_\nu} \lambda^2 + \cdots + \frac{a_{\nu+1}}{a_\nu} \lambda^{n+1-(\nu+1)} + \lambda^{n+1-\nu}.$$

Proof. Proposition 2.7 gives

$$\alpha(C - \frac{1}{x_j}) = \alpha(A - \lambda_j) = m_j \quad (j = 2, \ldots, k).$$

By Proposition 1.1 and Proposition 1.2, $\alpha(C) = 1$. Thus (1) is valid.

We have

$$m_A(\lambda) = a_\nu \lambda^\nu + a_{\nu+1} \lambda^{\nu+1} + \cdots + a_{n-1} \lambda^{n-1} + \lambda^n,$$

hence

$$0 = m_A(A) = a_\nu A^\nu + a_{\nu+1} A^{\nu+1} + \cdots + a_{n-1} A^{n-1} + A^n.$$

If $\nu \leq l \leq n$, then

$$C^{n+1} A^l = C^{n+1-l} C^l A^l = C^{n+1-l} (CA)^l = C^{n+1-l}CA = C^{n+1-l}CAC = C^{n+1-l}.$$

Then multiplying (2.3) by C^{n+1}, it follows that

$$0 = a_\nu C^{n+1-\nu} + a_{\nu+1} C^{n+1-(\nu+1)} + \cdots + a_{n-1} C^2 + C.$$

Now define the polynomial q by

$$q(\lambda) = \frac{1}{a_\nu} \lambda + \frac{a_{\nu-1}}{a_\nu} \lambda^2 + \cdots + \frac{a_{\nu+1}}{a_\nu} \lambda^{n+1-(\nu+1)} + \lambda^{n+1-\nu}.$$

Then $q(C) = 0$. Since degree of $q = n + 1 - \nu = 1 + m_2 + \cdots + m_k = \deg m_C$, we get $q = m_C$. \hfill \Box

2.11. Corollary. With the notation in Theorem 2.10 we have

$$C(A - \lambda_2)^{m_2} \cdots (A - \lambda_k)^{m_k} = 0.$$

7
Proof. Let \(D = (A - \lambda_2)^{m_2} \cdots (A - \lambda_k)^{m_k} \). From \(A^\nu D = m_A(A) = 0 \) we see that \(D(X) \subseteq N(A^\nu) \).
Since \(N(A^\nu) = N(C) \) (Proposition 1.2), \(CD = 0 \).

\[\square \]

Notation. \(X^* \) denotes the dual space of \(X \) and we write \(T^* \) for the adjoint of an operator \(T \in \mathcal{L}(X) \). Recall from [4, Theorem IV. 8.4] that

\[(2.4) \quad T(X) = N(T^*)^\perp \quad (T \in \mathcal{L}(X)). \]

2.12. Proposition. Suppose that \(T \in \mathcal{L}(X), \lambda \in \mathbb{C} \setminus \{0\} \) and that \(j \) is a nonnegative integer.

1. If \(0 \in \rho(T) \), then

\[(T - \lambda)^j(X) = (T^{-1} - \frac{1}{\lambda})^j(X). \]

2. If \(0 \in \sigma(T) \), if \(T \) is Drazin invertible and if \(C \) denotes the Drazin inverse of \(T \), then

\[(T - \lambda)^j(X) = (C - \frac{1}{\lambda})^j(X). \]

Proof. (1) Let \(y = (T - \lambda)^j x \in (T - \lambda)^j(X) \) \((x \in X) \). Then

\[(T^{-1} - \frac{1}{\lambda})^j T^j x = ((T^{-1} - \frac{1}{\lambda})T)^j x = (1 - \frac{1}{\lambda})^j x \]

\[= \frac{(-1)^j}{\lambda^j} (T - \lambda)^j x = \frac{(-1)^j}{\lambda^j} y, \]

therefore \(y \in (T^{-1} - \frac{1}{\lambda})^j(X) \).

(2) Let \(\nu = i(T) \). Then \(T^{\nu+1} C = T^\nu, \) \(TC = CT \) and \(CTC = C \). Hence

\[(T^*)^{\nu+1} C^* = (T^*)^\nu, \quad T^*C^* = C^*T^* \quad \text{and} \quad C^*T^*C^* = C^*. \]

Thus \(T^* \) is Drazin invertible and \(C^* \) is the Drazin inverse of \(T^* \). By Proposition 2.7,

\[N((T^* - \lambda)^j) = N((C^* - \frac{1}{\lambda})^j), \]

therefore the result follows in view of (2.4).

\[\square \]

2.13. Corollary.

1. If \(0 \in \rho(A) \), then

\[(A - \lambda_j)^{m_j}(X) = (A^{-1} - \frac{1}{\lambda_j})^{m_j}(X) \quad (j = 1, \ldots, k). \]

2. If \(0 \in \sigma(A) \) is a pole of order \(\nu \geq 1 \) of \(R_A(A) \) and if \(C \) is the Drazin inverse of \(A \), then

\[A^\nu(X) = C(X) \]

and

\[(A - \lambda_j)^{m_j}(X) = (C - \frac{1}{\lambda_j})^{m_j}(X) \quad (j = 2, \ldots, k). \]

Proof. (1) is a consequence of Proposition 2.12.
(2) That \(A^\nu(X) = C(X) \) is a consequence of Proposition 1.2. Now let \(j \in \{2, \ldots, k\} \). Because of Proposition 1.1 and Theorem 2.10 we see that

\[\alpha(C - \frac{1}{\lambda_j}) = \delta(C - \frac{1}{\lambda_j}) = m_j = \alpha(A - \lambda_j) = \delta(A - \lambda_j). \]

By [3, Satz 101.2], the subspaces

\[(A - \lambda_j)^{m_j}(X) \quad \text{and} \quad (C - \frac{1}{\lambda_j})^{m_j}(X) \]

are closed. Now apply Proposition 2.12.

\[\square \]
For \(j = 1, \ldots, k \) let \(P_j \) denote the spectral projection of \(A \) associated with the spectral set \(\{ \lambda_j \} \). Observe that

\[
P_i P_j = 0 \quad \text{for} \quad i \neq j \quad \text{and} \quad P_1 + \cdots + P_k = 1.
\]

If \(0 \in \rho(A) \), then denote by \(Q_j \) the spectral projection of \(A^{-1} \) associated with the spectral set \(\{ \frac{1}{\lambda_j} \} \) \((j = 1, \ldots, k) \). If \(0 \in \sigma(A) \) and if \(C \) is the Drazin inverse, then denote by \(Q_1 \) the spectral projection of \(C \) associated with the spectral set \(\{ 0 \} \) and by \(Q_j \) the spectral projection of \(C \) associated with the spectral set \(\{ \frac{1}{\lambda_j} \} \) \((j = 2, \ldots, k) \).

2.14. Corollary. \(P_j = Q_j \) \((j = 1, \ldots, k) \).

Proof. By [3, Satz 101.2], we have

\[
P_j(X) = N((A - \lambda_j)^{m_j}) \quad \text{and} \quad N(P_j) = (A - \lambda_j)^{m_j}(X)
\]

\((j = 1, \ldots, k) \). If \(0 \in \rho(A) \), then

\[
Q_j(X) = N((A^{-1} - \frac{1}{\lambda_j})^{m_j}) \quad \text{and} \quad N(Q_j) = (A^{-1} - \frac{1}{\lambda_j})^{m_j}(X)
\]

\((j = 1, \ldots, k) \). Now apply Proposition 2.6 and Corollary 2.13 (1) to get

\[
P_j(X) = Q_j(X) \quad \text{and} \quad N(P_j) = N(Q_j),
\]

hence \(P_j = Q_j \) \((j = 1, \ldots, k) \).

Now let \(0 \in \sigma(A) \). By Proposition 1.2, Proposition 2.7, Corollary 2.13 (2) and [3, Satz 101.2], we derive

\[
P_1(X) = N(C) = Q_1(X), \quad N(P_1) = C(X) = N(Q_1),
\]

\[
P_j(X) = N((C - \frac{1}{\lambda_j})^{m_j}) = Q_j(X)
\]

and

\[
N(P_j) = (C - \frac{1}{\lambda_j})^{m_j}(X) = N(Q_j)
\]

\((j = 2, \ldots, k) \). Hence \(P_j = Q_j \) \((j = 1, \ldots, k) \). \(\square \)

For \(A \) we have the representation

\[
A = \sum_{j=1}^{k} \lambda_j P_j + N,
\]

where \(N \in \mathcal{L}(X) \) is nilpotent and \(N = \sum_{j=1}^{k} (A - \lambda_j)P_j \) (see [4, Chapter V. 11]). If \(p = \max\{m_1, \ldots, m_k\} \), then it is easily seen that \(N^p = 0 \). If \(A \) has only simple poles, then \(N = 0 \).

2.15. Corollary. \(1 \) If \(0 \in \rho(A) \), then there is a nilpotent operator \(N_1 \in \mathcal{L}(X) \) with

\[
A^{-1} = \sum_{j=1}^{k} \frac{1}{\lambda_j} P_j + N_1
\]

\(2 \) If \(0 \in \sigma(A) \) and if \(C \) is the Drazin inverse of \(A \), then

\[
C = \sum_{j=2}^{k} \frac{1}{\lambda_j} P_j + N_1,
\]

where \(N_1 \in \mathcal{L}(X) \) is nilpotent.

Proof. Corollary 2.14. \(\square \)
With the notation of Corollary 2.15 (2) we have
\[AC = 1 - P_1, \quad CP_1 = 0 \]
(see Proposition 1.2) and
\[ACA = (1 - P_1) \left(\sum_{j=2}^{k} \lambda_j P_j + N \right) = A - P_1 \left(\sum_{j=2}^{k} \lambda_j P_j + N \right) = A - P_1 N, \]

hence
\[A = ACA + P_1 N, \quad P_1 N \text{ is nilpotent} \]
and
\[(ACA)P_1 N = ACP_1 AN = 0 = NACP_1 A = P_1 N(ACA). \]

Recall that \(ACA \) is the Drazin inverse of \(C \) and that \(i(ACA) = 1. \)

The following more general result holds:

2.16. Theorem. Suppose that \(T \in \mathcal{L}(X) \) is Drazin invertible, \(i(T) = \nu \geq 1 \) and that \(C \) is the Drazin inverse of \(T \). Then there is a nilpotent \(N \in \mathcal{L}(X) \) such that
\[T = TCT + N, \quad N(TCT) = (TCT)N = 0 \quad \text{and} \quad N^\nu = 0. \]

This decomposition is unique in the following sense: if \(S, N_1 \in \mathcal{L}(X) \), \(S \) is Drazin invertible, \(i(S) = 1, \) \(N_1 \) is nilpotent, \(N_1 S = SN_1 = 0 \) and if \(T = S + N_1 \), then \(S = TCT \) and \(N = N_1. \)

Proof. Let \(N = T - TCT \), then \(N^\nu = (T(1-CT))^\nu = T^\nu(1-CT)^\nu = T^\nu(1-CT) = T^\nu - T^\nu C = T^\nu - T^\nu + T^\nu = 0. \)

For the uniqueness of the decomposition we only have to show that \(S = TCT \). There is \(R \in \mathcal{L}(X) \) such that
\[SRS = S, \quad RSR = R \quad \text{and} \quad SR = RS. \]

Consequently,
\[N_1 R = N_1 RSR = N_1 SR^2 = 0 = R^S SN_1 = RN_1, \]

hence
\[TR = (S + N_1) R = SR = RS = R(S + N_1) = RT. \]

Now let \(n \) be a nonnegative integer such that \(N_1^n = 0. \) It follows that, since \(SN_1 = 0 = N_1 S, \)
\[T^n = (S + N_1)^n = S^n + N_1^n = S^n. \]

We can assume that \(n \geq \nu. \) Thus
\[T^{n+1} R = S^{n+1} R = S^{n-1} SRS = S^n = T^n. \]

Furthermore we have \(TR = RT \) and
\[RTR = R(S + N_1) R = RSR = R, \]

hence \(R = C. \) With \(S_1 = TCT \) we get
\[S_1 RS_1 = TCT TCTCT = TCT = S_1, \]
\[RS_1 R = C TCT = C TCT = RTR = R \]

and
\[S_1 R = TCTC = CTCT = RS_1. \]

This shows that \(S = S_1 = TCT. \)
References

Christoph Schmoeger,
Mathematisches Institut I,
Universität Karlsruhe (TH),
Englerstrasse 2,
76128 Karlsruhe,
Germany
E-mail address: christoph.schmoeger@math.uni-karlsruhe.de