Home | deutsch  |  Impressum  |  Data Protection  |  Sitemap  |  Intranet  |  KIT
Workgroup Functional Analysis

Secretariat
Kollegiengebäude Mathematik (20.30)
Room 2.041

Address
Karlsruher Institut für Technologie
Institut für Analysis
Englerstraße 2
76131 Karlsruhe


samira.junge@kit.edu, natascha.katz@kit.edu


Office hours:
9:00 - 11:00

Tel.: +49 721 608 43727

Fax.: +49 721 608 67650

Publications by Roland Schnaubelt since 2010

My refereed and submitted papers since 2010 are listed below. You can download the pdf files of the corresponding preprints. My papers before 2010 can be found following this link.

  1. S. Herr, T. Lamm, T. Schmid, R. Schnaubelt: Biharmonic wave maps: Local wellposedness in high regularity. Submitted. Download the pdf file.
  2. M. Pokojovy, R. Schnaubelt: Boundary stabilization of quasilinear Maxwell equations. Submitted. Download the pdf file.
  3. R. Schnaubelt, M. Spitz: Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Submitted. Download the pdf file.
  4. R. Schnaubelt, M. Spitz: Local wellposedness of quasilinear Maxwell equations with conservative interface conditions. Submitted. Download the pdf file.
  5. I. Lasiecka, M. Pokojovy, R. Schnaubelt: Exponential decay of quasilinear Maxwell equations with interior conductivity. Submitted. Download the pdf file.
  6. J. Eilinghoff, R. Schnaubelt: Error estimates in L^2 of an ADI splitting scheme for the inhomogeneous Maxwell equations. Submitted. Download the pdf file.
  7. S. Herr, T. Lamm, R. Schnaubelt: Biharmonic wave maps into spheres. To appear in Proc. Amer. Math. Soc. Download the pdf file.
  8. J. Eilinghoff, T. Jahnke, R. Schnaubelt: Error analysis of an energy preserving ADI splitting scheme for the Maxwell equations. SIAM J. Numer. Anal. 57 (2019), 1036-1057. Download the pdf file.
  9. L. Rzepnicki, R. Schnaubelt: Polynomial stability for a system of coupled strings. Bull. London Math. Soc. 50 (2018), 1117-1136. Download the pdf file.
  10. J. Eilinghoff, R. Schnaubelt: Error analysis of an ADI splitting scheme for the inhomogeneous Maxwell equations. Discrete Contin. Dyn. Syst. Ser. A. 38 (2018), 5685-5709. Download the pdf file.
  11. P. D'Ancona, S. Nicaise, R. Schnaubelt: Blow-up for nonlinear Maxwell equations. Electron. J. Differential Equations 2018, paper No. 73, 9 pp. Download the pdf file.
  12. M. Hochbruck, T. Pazur, R. Schnaubelt: Error analysis of implicit Runge--Kutta methods for quasilinear hyperbolic evolution equations. Numer. Math. 138 (2018), 557–579. Download the pdf file.
  13. T. Jahnke, M. Mikl, R. Schnaubelt: Strang splitting for a semilinear Schrödinger equation with damping and forcing. J. Math. Anal. Appl. 455 (2017), 1051–1071. Download the pdf file.
  14. Y. Latushkin, R. Schnaubelt, Xinyao Yang: Stable foliations near a traveling front for reaction diffusion systems. To appear in Discrete Contin. Dyn. Syst. Ser. B. 22 (2017), 3145-3165. Download the pdf file.
  15. R. Schnaubelt, M. Veraar: Regularity of stochastic Volterra equations by functional calculus methods. J. Evol. Equ. 17 (2017), 523-536. Download the pdf file.
  16. L. Maniar, M. Meyries, R. Schnaubelt: Null controllability for parabolic problems with dynamic boundary conditions of reactive-diffusive type. Evol. Equ. Control Theory 6 (2017), 381–407. Download the pdf file.
  17. R. Schnaubelt: Stable and unstable manifolds for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions. Adv. Differential Equations 22 (2017), 541-592. Download the pdf file.
  18. J. Eilinghoff, R. Schnaubelt, K. Schratz: Fractional error estimates of splitting schemes for the nonlinear Schrödinger equation. J. Math. Anal. Appl. 442 (2016), 740-760. Download the pdf file.
  19. L. Lorenzi, A. Lunardi, R. Schnaubelt: Strong convergence of solutions to nonautonomous Kolmogorov equations. TProc. Amer. Math. Soc. 144 (2016), 3903-3917. Download the pdf file.
  20. W. Dörfler, H. Gerner, R. Schnaubelt: Local wellposedness of a quasilinear wave equation. Appl. Anal. 95 (2016), 2110-2123. Download the pdf file.
  21. E.M. Ait Benhassi, S. Boulite, L. Maniar, R. Schnaubelt: Polynomial internal and external stability of well-posed linear systems. In: W. Arendt, R. Chill and Y. Tomilov (Eds.), "Operator Semigroups meet Complex Analysis, Harmonic Analysis and Mathematical Physics (Proceedings Herrnhut 2013)," Birkhäuser, 2015, pp. 1-16. Download the pdf file.
  22. R. Denk, R. Schnaubelt: A structurally damped plate equation with Dirichlet-Neumann boundary conditions. J. Differential Equations (2015) 259 , 1323-1353. Download the pdf file.
  23. D. Hundertmark, P. Kunstmann, R. Schnaubelt: Stability of dispersion managed solitons for vanishing average dispersion. Archiv Math. 104 (2015), 283-288. Download the pdf file.
  24. M. Hochbruck, T. Jahnke, R. Schnaubelt: Convergence of an ADI splitting for Maxwells equations. Numer. Math. 129 (2015), 535-561. Download the pdf file.
  25. S. Fornaro, G. Metafune, D. Pallara, R. Schnaubelt: Second order elliptic operators in L_2 with first order degeneration at the boundary and outward pointing drift. Commun. Pure Appl. Anal. 14 (2015), 407-419. Download the pdf file.
  26. R. Schnaubelt: Center manifolds and attractivity for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions. Discrete Contin. Dyn. Syst. Ser. A 35 (2015), 1193-1230. Download the pdf file.
  27. R. Johnson, Y. Latushkin, R. Schnaubelt: Reduction principle and asymptotic phase for center manifolds of parabolic systems with nonlinear boundary conditions. J. Dynam. Differential Equations 26 (2014), 243-266. Download the pdf file.
  28. M. Baroun, B. Jacob, L. Maniar, R. Schnaubelt: Semilinear observation systems. Systems Control Lett. 62 (2013), 924-929. Download the pdf file.
  29. S. Fornaro, G. Metafune, D. Pallara, R. Schnaubelt: One-dimensional degenerate operators in L^p-spaces. J. Math. Anal. Appl. 402 (2013), 308-318. Download the pdf file.
  30. M. Meyries, R. Schnaubelt: Maximal regularity with temporal weights for parabolic problems with inhomogeneous boundary conditions. Math. Nachr. 285 (2012), 1032-1051. Download the pdf file.
  31. M. Meyries, R. Schnaubelt: Interpolation, embeddings and traces of anisotropic fractional Sobolev spaces with temporal weights. J. Funct. Anal. 262 (2012), 1200-1229. Download the pdf file.
  32. S. Fornaro, G. Metafune, D. Pallara, R. Schnaubelt: Degenerate operators of Tricomi type in L^p-spaces and in spaces of continuous functions. J. Differential Equations 252 (2012), 1182-1212. Download the pdf file.
  33. L. Maniar, R. Schnaubelt: Stability of periodic solutions to parabolic problems with nonlinear boundary conditions. Adv. Differential Equations 17 (2012), 557-604. Download the pdf file.
  34. R. Schnaubelt, M. Veraar: Stochastic equations with boundary noise. J. Escher et.al. (Eds.), "Parabolic Problems: Herbert Amann Festschrift," Birkhäuser, 2011, pp. 609-629. Download the pdf file.
  35. R. Schnaubelt, G. Weiss: Two classes of passive time-varying well-posed linear systems. Math. Control Signals Systems 21 (2010), 265-301. Download the pdf file.
  36. M. Geissert, L. Lorenzi, R. Schnaubelt: L^p-regularity for parabolic operators with unbounded time-dependent coefficients. Ann. Mat. Pura Appl. (4) 189 (2010), 303-333. Download the pdf file.
  37. R. Schnaubelt, M. Veraar: Structurally damped plate and wave equations with random point force in arbitrary space dimensions. Differential Integral Equations 23 (2010), 957-988. Download the pdf file.
  38. G. Metafune, D. Pallara, P.J. Rabier, R. Schnaubelt: Uniqueness for elliptic operators on L^p(R^N) with unbounded coefficients. Forum Math. 22 (2010), 583-601. Download the pdf file.

My papers before 2010 can be found following this link.