Home | deutsch  |  Impressum  |  Data Protection  |  Sitemap  |  Intranet  |  KIT
Workgroup Functional Analysis

Kollegiengebäude Mathematik (20.30)
Room 2.041

Karlsruher Institut für Technologie
Institut für Analysis
Englerstraße 2
76131 Karlsruhe


Office hours:
9:00 - 11:00

Tel.: +49 721 608 43727

Fax.: +49 721 608 67650

Photo of Martin Spitz Dr. Martin Spitz

Office hour for students:
Room: Kollegiengebäude Mathematik (20.30)

Welcome on my homepage.

Since July 2019 I am at the University of Bielefeld. There you also find my current e-mail address.

During my time in Karlsruhe I was part of the workgroup Functional Analysis and the CRC 1173. In project A5 of the Collaborative Research Centre I have investigated qualitative properties of nonlinear Maxwell equations.

Current List of Courses
Semester Titel Typ
Summer Semester 2019 Lecture
Winter Semester 2018/19 Seminar
Summer Semester 2017 Proseminar
Summer Semester 2015 Proseminar
Winter Semester 2014/15 Lecture

Research interests

  • nonlinear partial differential equations
  • local wellposedness and long time behavior
  • initial boundary value problems
  • hyperbolic systems
  • Maxwell equations

Publications and Preprints

4.R. Schnaubelt, M. Spitz, Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Submitted. December 2018.
3.R. Schnaubelt, M. Spitz, Local wellposedness of quasilinear Maxwell equations with conservative interface conditions. Submitted. November 2018.
2.M. Spitz, Regularity theory for nonautonomous Maxwell equations with perfectly conducting boundary conditions. Submitted. May 2018.
1.M. Spitz, Local wellposedness of nonlinear Maxwell equations with perfectly conducting boundary conditions, Journal of Differential Equations 266 (2019), pp. 5012 - 5063.
Preprint Journal.


M. Spitz: Local Wellposedness of Nonlinear Maxwell Equations. Karlsruhe Institute of Technology. July 2017.
DOI: 10.5445/IR/1000078030

Master thesis

M. Spitz: Scattering and blow-up for the energy-critical focusing nonlinear Schrödinger equation. Karlsruhe Institute of Technology. August 2014.

Further information