Home | deutsch  |  Impressum  |  Data Protection  |  Sitemap  |  Intranet  |  KIT
Research Group 2: Numerics of Partial Differential Equations

Secretariat
Kollegiengebäude Mathematik (20.30)
Room 3.012

Address
Visitor address:
Room 3.012
Mathematikgebäude (20.30)
Englerstraße 2
D-76131 Karlsruhe

Mail address:
Institut für Angewandte und
Numerische Mathematik 2
Karlsruher Institut für Technologie (KIT)
D-76049 Karlsruhe

Office hours:
Mon. - Thu.: 10:00-11:30

Tel.: +49 721 608 42680

Fax.: +49 721 608 46679

Numerical Methods for Hyperbolic Equations (Summer Semester 2019)

Lecturer: Prof. Dr. Willy Dörfler
Classes: Lecture (0160800), Problem class (0160810)
Weekly hours: 3+1


Master Mathematics, Technical Mathematics, Economical Mathematics

We present basic theory for equations in conservation form and the fundamental principle to derive numerical methods. As an application we focus on compressible flow equations and Maxwell equations.

Requirements: Numerical methods for Differential Equations.

Exercises and helpful course materials can be found here: ILIAS

Introductionary course

There will be a short course in 'Basics in Finite Elements' and 'Solving Linear Equations' by Dr. Anzt and me. It is a course in the new KIT-Centre MATHSEE and is designed for engineers. This course will replace the dates in the first week and is recommended as an introduction.

Dates: Wed/Thu 24./25.4.2019, 14:00-17:15.


Schedule
Lecture: Monday 11:30-13:00 SR 3.61 Begin: 29.4.2019, End: 24.7.2019
Tuesday 11:30-13:00 (every 2nd week) SR 3.61
Problem class: Tuesday 11:30-13:00 (every 2nd week) SR 3.61 Begin: 8.5.2019, End: 24.7.2019
Lecturers
Lecturer, Problem classes Prof. Dr. Willy Dörfler
Office hours: Thursday, 15:45-16:30.
Room 3.013 Kollegiengebäude Mathematik (20.30)
Email: willy.doerfler at kit.edu
Problem classes M. Sc. Mariia Molochkova
Office hours: Wednesday, 14:00 - 15:00
Room 3.010 Kollegiengebäude Mathematik (20.30)
Email: mariia.molochkova@kit.edu

Content

Derivation of equations in conservation form. Shocks, Rarefaction waves, weak solutions. Aspects of existence and regularity theory. Discretization of conservation laws with Finite Volume and Discontinuous Galerkin Methods Applications.

Examination

Examination: Oral examination.

6 LP

References

  • J. S. Hesthaven: Numerical Methods for Conservation Laws
  • J. S. Hesthaven, T. Warburton: Nodal discontinuous Galerkin methods
  • D. Kröner: Numerical Schemes for Conservation Laws
  • R. Leveque: Numerical Methods for Conservation Laws