Home | english  |  Impressum  |  Datenschutz  |  Sitemap  |  Intranet  |  KIT
Arbeitsgruppe 2: Numerik partieller Differentialgleichungen

Sekretariat
Kollegiengebäude Mathematik (20.30)
Zimmer 3.012

Adresse
Hausadresse:
Zimmer 3.012
Mathematikgebäude (20.30)
Englerstraße 2
D-76131 Karlsruhe

Postadresse:
Institut für Angewandte und
Numerische Mathematik 2
Karlsruher Institut für Technologie (KIT)
D-76049 Karlsruhe

Öffnungszeiten:
Mo. bis Do.: 10:00-11:30 Uhr

Tel.: 0721 608 42680

Fax.: 0721 608 46679

Numerical Methods for Hyperbolic Equations (Sommersemester 2019)

Dozent: Prof. Dr. Willy Dörfler
Veranstaltungen: Vorlesung (0160800), Übung (0160810)
Semesterwochenstunden: 3+1


Master Mathematics, Technical Mathematics, Economical Mathematics

We present basic theory for equations in conservation form and the fundamental principle to derive numerical methods. As an application we focus on compressible flow equations and Maxwell equations.

Requirements: Numerical Methods for Differential Equations.

Exercises and helpful course materials can be found here: ILIAS

Introductionary course

There will be a short course in 'Basics in Finite Elements' and 'Solving Linear Equations' by Dr. Anzt and me. It is a course in the new KIT-Centre MATHSEE and is designed for engineers. This course will replace the dates in the first week and is recommended as an introduction.

Basics in Discretisations of PDEs. Dates: Wed/Thu 24./25.4.2019, 14:00-17:15.


Termine
Vorlesung: Montag 11:30-13:00 SR 3.61 Beginn: 29.4.2019, Ende: 24.7.2019
Dienstag 11:30-13:00 (14-tägig) SR 3.61
Übung: Dienstag 11:30-13:00 (14-tägig) SR 3.61 Beginn: 8.5.2019, Ende: 24.7.2019
Dozenten
Dozent, Übungsleiter Prof. Dr. Willy Dörfler
Sprechstunde: Donnerstags, 15:45-16:45 Uhr.
Zimmer 3.013 Kollegiengebäude Mathematik (20.30)
Email: willy.doerfler at kit.edu
Übungsleiterin M. Sc. Mariia Molochkova
Sprechstunde: nach Vereinbarung
Zimmer 3.010 Kollegiengebäude Mathematik (20.30)
Email: mariia.molochkova@kit.edu

Inhalt

Derivation of equations in conservation form. Shocks, Rarefaction waves, weak solutions. Aspects of existence and regularity theory. Discretization of conservation laws with Finite Volume and Discontinuous Galerkin Methods Applications.

Prüfung

Examination: Oral examination.

6 LP

Literaturhinweise

  • J. S. Hesthaven: Numerical Methods for Conservation Laws
  • J. S. Hesthaven, T. Warburton: Nodal discontinuous Galerkin methods
  • D. Kröner: Numerical Schemes for Conservation Laws
  • R. Leveque: Numerical Methods for Conservation Laws