Home | english  |  Impressum  |  Datenschutz  |  Sitemap  |  Intranet  |  KIT
Arbeitsgruppe 2: Numerik partieller Differentialgleichungen

Sekretariat
Kollegiengebäude Mathematik (20.30)
Zimmer 3.012

Adresse
Hausadresse:
Zimmer 3.012
Mathematikgebäude (20.30)
Englerstraße 2
D-76131 Karlsruhe

Postadresse:
Institut für Angewandte und
Numerische Mathematik 2
Karlsruher Institut für Technologie (KIT)
D-76049 Karlsruhe

Öffnungszeiten:
Mo. bis Do.: 10:00-11:30 Uhr

Tel.: 0721 608 42680

Fax.: 0721 608 46679

Numerical Methods in Fluidmechanics (Sommersemester 2019)

Dozent: Prof. Dr. Willy Dörfler
Veranstaltungen: Vorlesung (0161600), Übung (0161610)
Semesterwochenstunden: 2+1
Hörerkreis: Mathematik (ab 7. Semester)

The lecture is offered in english.


For this lecture we use the e-learning platform ILIAS of the SCC. You can follow this link to the course homepage in ILIAS.

Introductionary course

There will be a short course in 'Basics in Finite Elements' and 'Solving Linear Equations' by Dr. Anzt and me. It is a course in the new KIT-Centre MATHSEE and is designed for engineers. This course will replace the dates in the first week and is recommended as an introduction.

Basics in Discretisations of PDEs. Dates: Wed/Thu 24./25.4.2019, 14:00-17:15.

Termine
Vorlesung: Donnerstag 11:30-13:00 SR 3.061 Beginn: 25.4.2019, Ende: 25.7.2019
Übung: Freitag 11:30-13:00 (14-tägig) SR 3.061 Beginn: 3.5.2019, Ende: 26.7.2019
Dozenten
Dozent Prof. Dr. Willy Dörfler
Sprechstunde: Donnerstags, 15:45-16:45 Uhr.
Zimmer 3.013 Kollegiengebäude Mathematik (20.30)
Email: willy.doerfler at kit.edu
Dozent, Übungsleiter M.Sc. Fabian Castelli
Sprechstunde: nach Vereinbarung
Zimmer 3.014 Kollegiengebäude Mathematik (20.30)
Email: fabian.castelli at kit.edu

Starting from basics we develop the continuum mechanical model that lead to the fundamental equations for incompressible and compressible flows. We will study in more detail potential flows, Stokes flows and (non-turbulent) Navier–Stokes flows.
The numerical techniques we consider are the finite element method, the finite volume method and the discontinuous Galerkin method.
As special applications we will consider particulate and electrokinetic flows as one will find for example in battery models.

Prüfung

In the end of the lecture there will be an oral examination (about 20 min), 4 ECTS.

Literaturhinweise

  • M. Feistauer, J. Felcman, I. Straskraba. Mathematical and computational methods for compressible flow.
  • R. Temam. Navier–Stokes Equations.
  • R. Verfürth. Computational Fluid Dynamics, Lecture Notes Ruhr-Univ. Bochum.