Home | deutsch | Impressum | Sitemap | Intranet | KIT
Research Group 3: Scientific Computing

Secretariat
Kollegiengebäude Mathematik (20.30)
Room 3.039

Address
Hausadresse:
Zimmer 3.039
Englerstr. 2
Kollegiengebäude Mathematik (20.30)
76128 Karlsruhe

Postadresse:
Karlsruher Institut für Technologie (KIT)
Fakultät für Mathematik
Institut für Angewandte und Numerische Mathematik
Arbeitsgruppe 3: Wissenschaftliches Rechnen
Englerstr. 2
Kollegiengebäude Mathematik (20.30)
D-76131 Karlsruhe

Office hours:
Mo-Fr 9-12 Uhr

Tel.: +49 721 608 42062

Fax.: +49 721 608 43197

JProf. Dr. Katharina Schratz

Office hour for students: By Appointment
Room: 3.024 Kollegiengebäude Mathematik (20.30)
Tel.: +49 721 608 47651
Fax.: +49 721 608 43197
Email: Katharina.Schratz@kit.edu

Englerstr. 2
D-76131 Karlsruhe





Semester Titel Typ
Summer Semester 2016
Winter Semester 2015/16
Summer Semester 2015
Winter Semester 2014/15
Summer Semester 2014
Winter Semester 2013/14
Seminar


Current Projects

CRC 1173-Project B1: "Klein-Gordon-Zakharov systems in high-frequency regimes"
PIs: Prof. Dr. Guido Schneider, JProf. Dr. Katharina Schratz
Funding Period: July 2015 to June 2019
Links: CRC 1173 Wave phenomena, Project B1

Publications

  • M. Daub, G. Schneider, K. Schratz: From the Klein-Gordon-Zakharov system to the Klein-Gordon equation. To appear in Mathematical Methods in the Applied Sciences.
  • J. Eilinghoff, R. Schnaubelt, K. Schratz: Fractional error estimates of splitting schemes for the nonlinear Schrödinger equation. J. Math. Anal. Appl. 442, 740-760 (2016).
  • E. Hansen, A. Ostermann, K. Schratz: The error structure of the Douglas-Rachford splitting method for stiff linear problems. J. Comput. Appl. Math. 303, 140-145 (2016).
  • E. Faou, A. Ostermann, K. Schratz: Analysis of exponential splitting methods for inhomogeneous parabolic equations. IMA J. Numer. Anal. 35, 161-178 (2015).

  • E. Faou, K. Schratz: Asymptotic preserving schemes for the Klein-Gordon equation in the non-relativistic limit regime. Numer. Math. 126, 441-469 (2014).
  • A. Ostermann, K. Schratz: Stability of exponential operator splitting methods for non-contractive semigroups. SIAM J. Numer. 51, 191-203 (2013).
  • M. Mergili, K. Schratz, A. Ostermann, W. Fellin: A GRASS GIS implementation of the Savage-Hutter avalanche model and its application to the 1987 Val Pola event. Landslide Science and Practice, vol. 3: Spatial Analysis and Modelling (C. Margottini, P. Canuti, K. Sassa, eds.), Springer, Berlin Heidelberg, 367-373 (2013).
  • A. Ostermann, K. Schratz: Error analysis of splitting methods for inhomogeneous evolution equations. Appl. Numer. Math. 62, 1436-1446 (2012).
  • M. Mergili, K. Schratz, A. Ostermann, W. Fellin: Physically-based modelling of granular flows with Open Source GIS. Nat. Hazards Earth Syst. Sci. 12, 187-200 (2012).
  • A. Ostermann, K. Schratz, G. Spielberger: Lie splitting on polygonal domains. Proc. Appl. Math. Mech. 11, 787-788 (2011).

Short CV

  • 2012: Dr., University of Innsbruck, Austria
  • 2012 - 2013: Post-Doc at the ENS Cachan Bretagne & INRIA, Rennes, France
  • September 2013 - current: Junior professor at the Karlsruhe Institute of Technology, Karlsruhe, Germany

Links to my PhD students