High-dimensional approximation

Chapter I: Sparse grids — examples

Tobias Jahnke

Karlsruhe Institute of Technology — Winter term 2009/2010
Full and sparse grids
Figure 3.3. Scheme of subspaces for $d = 2$. Each square represents one subspace W_i with its associated grid points. The supports of the corresponding basis functions have the same mesh size h_i and cover the domain Ω.

Stolen from
Full grid vs. sparse grid in 2d

Stolen from
Sparse grids: grid points
Sparse grids in 2d
Sparse grids in 3d
Approximation on sparse grids:

First example
Approximation on sparse grids: First example
Approximation on sparse grids: First example
Approximation on sparse grids: First example
Approximation on sparse grids: First example
Approximation on sparse grids: First example
Approximation on sparse grids: First example
Approximation on sparse grids: First example
Approximation on sparse grids:

Second example
Approximation on sparse grids: Second example
Approximation on sparse grids: Second example
Approximation on sparse grids: Second example
Approximation on sparse grids: Second example

![Graphs showing approximation on sparse grids]

- **Exact**: A graph representing the exact solution.
- **n = 3**: A graph showing the approximation for n = 3.
Approximation on sparse grids: Second example
All numerical examples were made with the

Sparse Grid Interpolation Toolbox

written by Andreas Klimke (Universität Stuttgart)

This toolbox can be downloaded from

http://www.ians.uni-stuttgart.de/spinterp/