Spezialfälle:

(i) Das Matrix-Vektor-Produkt von \(A \in \mathbb{R}^{m \times n} \) und \(v \in \mathbb{R}^n \) kann als Spezialfall des Matrixprodukts interpretiert werden.

(ii) Ist \(I \in \mathbb{R}^{m \times m} \) die Identität, so gilt \(IA = A \) für alle \(A \in \mathbb{R}^{m \times n} \) und \(BI = B \) für alle \(B \in \mathbb{R}^{m \times m} \).

1.3 Eigenvork und Eigenvektoren

Beispiel: \(A = \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix} \), \(v = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \)

\[Av = \begin{pmatrix} -2 \\ 8 \end{pmatrix} = -2v \]

Beobachtung: In diesem speziellen Fall ist das Ergebnis der Matrix-Vektor-Multiplikation dasselbe wie die Multiplikation von \(v \) mit der Zahl -2.

Frage: Gibt es für jeden Vektor \(v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \) eine Zahl \(\lambda \) mit der Eigenschaft, dass \(Av = \lambda v \) ist?

Antwort: Nein! Gegenbeispiel: Für \(v = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \) ist \(Av = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \), und es gibt keine Zahl \(\lambda \in \mathbb{R} \) mit \(\lambda (1) = 2 (2) \).
Definition 3: Sei $\lambda \in \mathbb{R}$ und $A \in \mathbb{R}^{n \times n}$ eine Matrix. Dann heißt $v \in \mathbb{R}^n$ ein **Eigenvektor** von A zum **Eigenwert** $\lambda \in \mathbb{R}$, falls

$$Av = \lambda v$$

gilt, und $v \neq (0, \ldots, 0)$ ist (d.h. falls mindestens ein Eingang von v von 0 verschieden ist).

Bemerkung: Eine Matrix $A \in \mathbb{R}^{n \times n}$ mit $A_{ij} = 0$ kann keine Eigenvorwerte haben, da sich dann bei der Matrix-Vektor-Multiplikation die "Länge" der Vektoren ändert (von v zu Av).

Spezialfälle:

- **Ist** $A = I \in \mathbb{R}^{n \times n}$ die Identität, so gilt $Iv = v = 1.1v$ für alle $v \neq 0$. Also ist jeder Vektor ein Eigenvektor von I zum Eigenwert $\lambda = 1$.

- **Ist** $A = \begin{pmatrix} 0 & \cdots & 0 \\ 0 & \cdots & 0 \end{pmatrix} \in \mathbb{R}^{n \times n}$ die Null-Matrix, so ist jeder Vektor $v \neq 0$ ein Eigenvektor zum Eigenwert $\lambda = 0$.

- **Ist** $A = \begin{pmatrix} a_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{nn} \end{pmatrix}$ eine Diagonalmatrix, so gilt

$$Ae^{i\xi} = \lambda e^{i\xi} \text{ für jedes } k \in \{1, \ldots, n\}.$$

Also ist $e^{i\xi}$ ein Eigenvektor von A zum Eigenwert $\lambda = \lambda_k$.
Lemma 2: Wenn \(v \) ein Eigenvektor von \(A \) zum Eigenwert \(\lambda \) und \(c \neq 0 \) eine reelle Zahl ist, so ist auch \(cw = cv \) ein Eigenvektor von \(A \) zum Eigenwert \(\lambda \).

Eigenvektoren sind also nicht eindeutig, sondern nur bis auf konstante Multiplikation mit \(c \neq 0 \) bestimmt.

Beweis: Sei \(v \neq 0, c \neq 0 \).

\[v \text{ Eigenvektor von } A \iff Av = \lambda v \]
\[\iff cAv = c\lambda v \]
\[\iff A(cv) = \lambda (cv) \]
\[\iff A(cv) = \lambda v. \]

Eigenwerte und -vektoren spielen in verschiedenen Anwendungen eine wichtige Rolle. Leider ist es bei großen Matrizen meist schwierig bzw. unmöglich, die Eigenwerte -vektoren analytisch (d.h. mit Papier und Bleistift) zu bestimmen. Im Fall \(d = 2 \) gilt jedoch der folgende Satz 3: Eine Zahl \(\lambda \) ist genau dann ein Eigenwert von

\[A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in \mathbb{R}^{2 \times 2} \]

wenn \(\lambda \) eine Nullstelle des charakteristischen Polynoms

\[p(x) = x^2 - (a_{11} + a_{22})x + (a_{11}a_{22} - a_{12}a_{21}) \]

ist, d.h. wenn \(p(\lambda) = 0 \) ist.

(Beweis wird weggelassen.)
Beispiel:
\[A = \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix} \]
\[\Rightarrow p(x) = x^2 - (2 - 1)x + (2 \cdot (-1) - 4 \cdot 1) = x^2 - x - 6 \]

Nullstellen ("Mitternachtsformel"):
\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{1 - 4(-6)}}{2} = \frac{1 \pm 5}{2} = \{3, -2\} \]

(\text{zwe. Eigenwert})

Den Eigenvektor zum Eigenwert \(\lambda = 3 \) bestimmt man durch
\[A \mathbf{v} = \lambda \mathbf{v} \iff \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 3 \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \]

\[\iff \begin{pmatrix} 2v_1 + v_2 = 3v_1 \\ 4v_1 - v_2 = 3v_2 \end{pmatrix} \]

sind
\[\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} v_2 \\ v_2 \end{pmatrix} \]

Also \(\mathbf{v}_2 = (1, 1) \) und nach Lemma 2 auch alle Vielfachen zu Eigenvektoren von \(\lambda = 3 \) zum Eigenwert 3.

1.4 Taylor-Entwicklungen

Ziel: Möchte eine (eventuell komplizierte) Funktion lokal durch ein Polynom approximieren.

Notation: Die k-te Ableitung einer Funktion wird mit \(\frac{d^k f}{dx^k} \) bezeichnet. Im Fall \(k=1 \) bzw. \(k=2 \)

schreibt man auch \(f'(x) = \frac{df}{dx}(x) \) bzw. \(f''(x) = \frac{d^2 f}{dx^2} \).