Bemerkung: Je höher die Ordnung p, desto schneller verringert sich für $h \to 0$ der Approximationfehler, z.B.

$\begin{array}{cccc}
h & h^2 & h^3 & h^4 \\
0.1 & 0.01 & 0.001 & 0.0001 \\
0.01 & 0.0001 & 0.00001 & 0.000001 \\
\end{array}$

Aus 4.1 bzu. 4.2 wissen wir, dass beide Euler-Verfahren nur die Ordnung $p = 1$ haben. Die folgenden Verfahren haben $p = 2$:

(a) Implizite Milne-Pendextregel:

$y_{n+1} = y_n + h \frac{f(y_n + \frac{y_{n+1}}{2})}{2}$ (A-stabil)

(b) Implizite Trapezregel:

$y_{n+1} = y_n + \frac{h}{2} \left(f(y_n) + f(y_{n+1})\right)$ (A-stabil)

(c) Verfahren von Heun:

$y_{n+1} = y_n + \frac{h}{2} \left(f(y_n) + f(z_{n+1})\right)$ (explizit, nicht A-stabil)

mit $z_{n+1} = y_n + h f(y_n)$