Home | english  |  Impressum  |  Datenschutz  |  Sitemap  |  Intranet  |  KIT
Arbeitsgruppe 3: Wissenschaftliches Rechnen

Sekretariat
Kollegiengebäude Mathematik (20.30)
Zimmer 3.039

Adresse
Hausadresse:
Zimmer 3.039
Englerstr. 2
Kollegiengebäude Mathematik (20.30)
76131 Karlsruhe

Postadresse:
Karlsruher Institut für Technologie (KIT)
Fakultät für Mathematik
Institut für Angewandte und Numerische Mathematik
Arbeitsgruppe 3: Wissenschaftliches Rechnen
Englerstr. 2
Kollegiengebäude Mathematik (20.30)
D-76131 Karlsruhe

Öffnungszeiten:
Mo-Do 9-12 Uhr

Tel.: 0721 608 42062

Fax.: 0721 608 43197

Publikationen mit und über M++

Dissertationen

  • D. Ziegler. A parallel and adaptive space-time discontinuous Galerkin method for visco-elastic and visco-acoustic waves (Dissertation, 2019)

Publikationen

  • W. Dörfler, S. Findeisen, C. Wieners and D. Ziegler: Parallel adaptive discontinuous Galerkin discretizations in space and time for linear elastic and acoustic waves. In: U. Langer and O. Steinbach (eds.) Space-Time Methods. Applications to Partial Differential Equations, pp. 61-88. Walter de Gruyter, Radon Series on Computational and Applied Mathematics 25 (2019)
  • J. Ernesti and C. Wieners: A space-time discontinuous Petrov-Galerkin method for acoustic waves. In: U. Langer and O. Steinbach (eds.) Space-Time Methods. Applications to Partial Differential Equations, pp. 89-116. Walter de Gruyter, Radon Series on Computational and Applied Mathematics 25 (2019)
  • J. Ernesti and C. Wieners: Space-time discontinuous Petrov-Galerkin methods for linear wave equations in heterogeneous media. In: Computational Methods in Applied Mathematics (19), pp. 465-481 (2019)
  • K. Schulz, L. Wagner, C. Wieners: A mesoscale continuum approach of dislocation dynamics and the approximation by a Runge-Kutta discontinuous Galerkin method, International Journal of Plasticity (120), pp. 248-261, Elsevier (2019)
  • R. Shirazi-Nejad, C. Wieners: Parallel Inelastic Heterogeneous Multi-Scale Simulations. In: Multi-scale Simulation of Composite Materials, pp. 57-96, Springer (2019)
  • W. Dörfler, S. Findeisen and C. Wieners: Space-time discontinuous Galerkin discretizations for linear first-order hyperbolic evolution systems. In: Comput. Methods Appl. Math. 16, pp. 409-428 (2016)
  • D. Maurer, C. Wieners: A scalable parallel factorization of finite element matrices with distributed Schur complements, Numer. Linear Algebra Appl. 23, pp. 848-864, Wiley Online Library (2016)
  • M. Hochbruck, T. Pazur, A. Schulz, E. Thawinan, C. Wieners: Efficient time integration for discontinuous Galerkin approximations of linear wave equations, ZAMM (95), pp. 237-259 (2015)
  • S. Sandfeld, E. Thawinan, C. Wieners: A link between microstructure evolution and macroscopic response in elasto-plasticity: formulation and numerical approximation of the higher-dimensional continuum dislocation dynamics theory, International Journal of Plasticity (72), pp. 1-20, Elsevier (2015)
  • D. Maurer, C. Wieners: A highly scalable multigrid method with parallel direct coarse grid solver for Maxwell's equations. In High Performance Computing in Science and Engineering ‘13, Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2013 Nagel, Wolfgang E.; Kröner, Dietmar H.; Resch, Michael M. (Eds.) Springer-Verlag 2013, p 671-677
  • C. Wieners: A geometric data structure for parallel finite elements and the application to multigrid methods with block smoothing. Computing and Visualization on Science, Vol.13, (2010) 161-175
  • P. Neff, K. Chelminski, W. Müller, C. Wieners: A numerical solution method for an infinitesimal elasto-plastic Cosserat model, Mathematical Models and Methods in Applied Sciences (M3AS) vol.17 no.8 (2007) 1211-1240

Weitere Publikationen finden Sie auf der Seite von Herrn Prof. Dr. C. Wieners.