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Abstract. In systems biology, the stochastic description of biochemical reaction kinetics is
increasingly being employed to model gene regulatory networks and signalling pathways. Mathe-
matically speaking, such models require the numerical solution of the underlying evolution equation,
known as the chemical master equation (CME). Up to now, the CME has primarily been treated
by Monte-Carlo techniques, the most prominent of which is the stochastic simulation algorithm
(Gillespie 1976). The paper presents an alternative, which focuses on the discrete partial differential
equation (PDE) structure of the CME. This allows to adopt ideas from adaptive discrete Galerkin
methods as first suggested in (Deuflhard, Wulkow 1989) for polyreaction kinetics and independently
developed in (Engblom 2006). Among the two different options of discretizing the CME as a dis-
crete PDE, Engblom had chosen the method of lines approach (first space, then time), whereas we
strongly advocate to use the Rothe method (first time, then space) for clear theoretical and algorith-
mic reasons. Numerical findings at two rather challenging problems illustrate the promising features
of the proposed method and, at the same time, indicate lines of necessary further improvement of
the method worked out here.
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Introduction. Stochastic effects are of crucial importance in the understanding
of gene regulatory networks and signalling cascades [15, 37, 32, 33]. Based on this
insight, there is a growing interest in stochastic modelling approaches to chemical
reaction kinetics. The design of efficient numerical techniques and reliable approxi-
mations schemes for the solution of the chemical master equation (CME) is now an
active field of research. In almost all approaches, the CME is solved by Monte-Carlo
techniques, generating a statistically large ensemble of realizations of the associated
continuous–time / discrete–state–space Markov jump process. The most prominent
of these approaches is the stochastic simulation algorithm due to Gillespie in [20, 21].
This algorithm, however, requires an update of the system at each time when one
of the reaction channels fires, thus causing enormous computational cost in the case
of highly reactive systems. In order to gain relevant information (such as, e.g., ex-
pectations), a sufficiently large number of realizations has to be computed, which
multiplies the computational work. Therefore, research has mainly concentrated on
how to improve the efficiency of this kind of algorithm (cf. [19, 23, 6, 36, 1, 25, 7, 38]).

As an alternative to Monte-Carlo approaches, there is a growing interest in di-
rectly solving the CME, i.e., approximating the probability distribution as a function
of time and space [35, 34, 5, 31, 16, 28]. After truncation of the state space to a suffi-
ciently large finite domain, the original CME is reduced to a finite dimensional linear
system of ordinary differential equations (ODEs). Since the state space is typically
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still too huge for standard approaches to be applicable, efficient numerical techniques
to approximate the matrix exponential, like Krylov-based or sparse grid techniques,
are used.

The present paper deals with an alternative idea based on a change of perspective.
In fact, from a mathematical point of view, the CME may be understood as a count-
able system of ordinary differential equations (CODE) or, equivalently, as a discrete
partial differential equation (PDE). For its numerical treatment, the main challenge is
the fact that each single state of the state space corresponds to one degree of freedom
in the CME. Even in case of a small system containing, e.g., only three molecular
species and at most 102 copy numbers per species, a total number of (102)3 = 106

coupled ordinary differential equations (ODEs) has to be solved.
This situation is comparable to the one in polyreaction kinetics. There, too, single

molecules (monomers) are linked together to long chains whose dynamical mathemat-
ical description gives rise to huge numbers of ODEs, say up to 104 − 106 in realistic
examples, sometimes even not known in advance. Two of the present authors have
a long standing expertise in modelling and efficient simulation of polymer kinetics
[13, 42, 45, 43, 27, 14, 44]. This has resulted in comprehensive numerical solvers and
user-friendly software tools (e.g. Predici, Parsival), which serve as basis and often as
reference for modelling applications in more than hundred publications in this field
[8, 44]; for review articles see, e.g., [46, 29]. However, as a distinguishing feature,
polymerization systems possess a natural coordinate, the polymer chain length. For
this reason, the techniques used in polyreaction kinetics will need some thorough re-
consideration in the present context. A first step in this direction has been performed
recently by Engblom [16]. He has worked out a method of lines (MOL) approach,
i.e. first state space approximation, then time discretization, so that one is left with
a system of ordinary differential equations (ODEs). In what follows, we propose an
approach in the frame of a Rothe method (ROM), i.e. first time discretization, then
state space approximation, which leads to a sequence of stationary problems and thus
conveniently allows for adaptively chosen state subspaces. This so-called adaptive
Rothe method has been introduced by Bornemann [4, 2] in 1990 for scalar parabolic
equations and extended by Lang to parabolic systems of reaction-diffusion type up
to challenging real life problems [30]. Already in 1992, Wulkow had transferred the
approach to polyreaction kinetics in his thesis [42, 43]. The ROM will be combined
with a Galerkin h-p-method in higher dimensions which already has been successfully
applied to similar problems with continuous property coordinates [26].

The article is organized as follows. In Section 1, we first set the scene and intro-
duce the chemical master equation focusing on its discrete PDE structure. Moreover,
we recall the two possible discretization options for this discrete PDE, the MOL and
the ROM, and discuss their suitability to allow for state space adaptivity. On this
basis, in Section 2, we work out details of discrete Galerkin methods for the CME.
Adaptive Galerkin methods in one dimension are recalled and extended via a tensor
product approach to multiple dimensions. The arising reduced linear systems require
the efficient numerical evaluation of matrix elements and right-hand sides. In this
context, Gauss-Christoffel summation plays an important role. Finally, in Section 3,
we apply our approach to two challenging model problems exhibiting typical features
of stochastic reaction kinetics of variable degree.

1. Preliminary Considerations. In this section, we first formulate the chem-
ical master equation (CME) and reveal its structure as a discrete partial differential
equation (PDE). From this perspective, we then discuss two options concerning the
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order of time discretization and state space approximation in view of adaptivity.

1.1. Chemical Master Equation as Discrete PDE. Consider a well-mixed
system of volume V with d chemical species S1, . . . , Sd involved in M reactions
R1, . . . , RM . The state of the system is characterized by a vector

X(t) = (X1(t), . . . , Xd(t)) ∈ Nd

with entries Xi(t) denoting the numbers of molecules of Si. (Here and below, N is
the set of nonnegative integers.) In the stochastic modelling approach treated here,
the discrete vector X(t) is understood to be random. For a brief introduction of
the stochastic modelling approach in the context of chemical reaction kinetics see,
e.g., [20, 22], for a general introduction to Markov processes see, e.g., [41]. The
reaction probability for each reaction Rj is specified by the propensity function αj =
αj(X(t), t), which typically equals the product of a rate constant cj and the number
of possible combinations of reactant molecules involved in reaction Rj . The most
frequently arising reaction types are listed in Table 1.1.

chemical reaction αj

Sk → Si cjXk(t)

Sk + Sl → Si cjXk(t)Xl(t)

Sk + Sl → Si cjXk(t)(Xk(t)− 1)/2

Table 1.1
Stochastic propensity functions

Once a reaction Rj takes place, the number of molecules for each species changes
according to the stoichiometric vector νj ∈ Nd, i.e., X(t) → X(t) + νj . Note that the
first two propensity terms above have the same form as in the continuous case, while
the third one clearly reveals the discrete nature of the process.

The time evolution of the probability distribution function (PDF)

p(t, x) = P
[
X1(t) = x1, . . . , Xd(t) = xn

]
, x ∈ Nd

of the random vector X(t) is given by the chemical master equation (CME)

∂tp(t, x) =
M∑

m=1

[
αm(x− νm)p(t, x− νm)− αm(x)p(t, x)

]
, (1.1)

see, e.g., [20, 22, 17, 41]. If the argument (x − νm) contains negative entries, the
corresponding term has to be omitted because the PDF p(t, ·) is only defined on Nd.
Hence, for convenience we set

αm(x) = 0 and p(t, x) = 0 for all x 6∈ Nd.

Upon defining the infinitesimal generator

(Ap(t, ·))(x) =
M∑

m=1

[
αm(x− νm)p(t, x− νm)− αm(x)p(t, x)

]
, (1.2)
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the CME with initial condition p(0) = φ can be rewritten in operator form as the
abstract Cauchy problem

∂tp(t) = Ap(t), p(0) = φ (1.3)

where p(t) = p(t, ·). We note that (1.1) or (1.3) are linear equations, which will be
useful for the construction of algorithms.

In mathematical terms, the CME may be understood either as a countable system
of ODEs (often abbreviated as CODEs) or, equivalently, as a discrete partial differ-
ential equation (PDE), wherein the continuous derivatives are replaced by discrete
differences. The theory of CODEs strongly indicates that CODEs are structurally
quite different from ODE systems, even of high dimension, but quite close to PDEs
[9, 10].

Upon adopting the discrete PDE point of view, we are naturally led to consider
adaptive discrete Galerkin methods as first introduced in [13, 45] and further pursued
in [42, 43]. Surveys on the development of the topic since then can be found in
[44, 14]. However, the numerical challenge in solving the CME are its many degrees
of freedom, even for reaction systems with a relatively small number of species. In
Section 3.2 we give an example of a reaction system with just two chemical species
whose total number of molecules is confined to 104, resulting in an CME with 108

degrees of freedom. Therefore, modifications of the original ideas of discrete Galerkin
methods will be necessary in the present context.

1.2. Integrating the CME. Assume that the exact CME solution p is con-
tained in some Hilbert space H with inner product 〈·, ·〉. In view of the theory [43] we
aim at a space with bounded statistical moments and H ↪→l2 (see also Section 2.2).
Then p ∈ H can be represented in terms of basis functions {qk}, which span H, so
that

p(t, x) =
∞∑

k=0

ak(t)qk(x). (1.4)

Upon truncating this expansion, we naturally arrive at some approximation pr(t) ∈
Hr ⊂ H to p(t) called the Galerkin approximation

pr(t, x) =
r∑

k=0

a
[r]
k (t)qk(x). (1.5)

In special cases, one can even guarantee that a
[r]
k = ak, i.e. that the coefficients

are independent of the truncation index. For simplicity, the superscript [r] will be
omitted. Crucial details to be set in this approximation frame are:

• choice of basis functions {qk},
• choice of truncation index r,
• computation of expansion coefficients {a[r]

k (t)} via the discrete PDE (1.3).
In this section, we will only discuss the last two points. The first point is left to the
subsequent Section 2.

Method of lines (MOL): first space, then time. This approach is the most popular
one to tackle PDEs. After choosing a finite dimensional subspace Hr ⊂ H, we are
left with a finite dimensional ODE. Given a fixed truncation subspace Hr, we insert
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the corresponding representation (1.5) into the CME (1.1) and take the inner product
with a basis function in Hr:

〈 r∑

k=0

qk∂tak(t), ql

〉
=

〈 r∑

k=0

(Aqk

)
ak(t), ql

〉
.

This leads us to evolution equations for the expansion coefficients a(t) = (ak(t)):

Γr
d
dt

a(t) = Aa(t)

in terms of the “mass” matrix Γr = (〈qk, ql〉) ∈ Rr×r and the “stiffness” matrix
A = (〈Aqk, ql〉) ∈ Rr×r representing the Galerkin approximation of the generator A.
For further details see, e.g., [13].

In chemical reaction kinetics, the resulting ODEs are typically stiff and must
therefore be solved by some implicit numerical integration scheme. For example, the
implicit Euler method for step size τ leads to a linear system of the kind

(Γr − τA)∆η0 = τA η0, (1.6)
η1 = η0 + ∆η0,

where the vectors ηi ∈ Rr contain the Galerkin coefficients, and ∆η0 = η1 − η0 is the
corresponding difference. Note that the given initial values η0 correspond to some
pr(t) ∈ Hr.

Rothe method (ROM): first time, then space. This approach has been introduced
and theoretically analyzed in [4, 2] and immediately transferred to polyreaction ki-
netics in [42, 43]. After discretization in time first, we are left with a sequence of
stationary problems.

For linear problems like the CME considered here, Bornemann [3] had even de-
signed a special time integration scheme. This scheme incorporates an easily accessible
temporal error estimate. Starting from u0 = p(0), a second order temporal approxima-
tion un of the CME solution p(tn) at tn = t0 +nτ (n = 1, 2, ...) is obtained recursively
by first performing one step of the implicit Euler method

(I − τA)∆u(1)
n = τA un, (1.7)

u
(1)
n+1 = un + ∆u(1)

n ,

followed by the second order correction step

(I − τA)∆u(2)
n = −τ

2
A ∆u(1)

n , (1.8)

un+1 = u
(1)
n+1 + ∆u(2)

n .

In contrast to the MOL approach, the temporal approximations are still defined on
the state space Nd. As add-on, we may gain the temporal error estimate

epsT = ‖∆u1‖, (1.9)

defined in some suitable norm. A new time step τnew is then proposed on the basis
of an old time step τ by the usual formula

τnew =

√
ρ
TOL
epsT

τ, (1.10)
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wherein ρ < 1 is an additional safety factor. All arising norms of state space terms
can be approximated to prescribed accuracy within the Galerkin setting. Suppose we
are given some Galerkin subspace Hr; then we may compute an associated spatial
error estimate (details to be worked out in the Section 2 below, see eq. (2.4))

‖pr − p‖ ≤ TOLp. (1.11)

Here TOLp is an imposed spatial error tolerance. Following an argument by Borne-
mann in [3], this error tolerance is linked to the user-specified tolerance TOL by

TOLp =
1
32

TOL .

State space adaptivity. By construction, the subspace Hr has to be kept un-
changed over the integration step in the MOL approach. A change of the subspace
after an integration step is possible, but a rather subtle task requiring a careful con-
trol of interpolation errors. Moreover, earlier computations in polyreaction kinetics
have confirmed the undesirable experience that, already after one integration step, the
approximation tends to “leave” the preassigned subspace Hr with the consequence of
either extremely small time steps or oscillatory numerical artifacts. For this reason, a
“moving weight function” concept has been introduced in [13] which results in adap-
tive time dependent basis functions {qk(t)}. A comparable approach has recently been
introduced by Engblom [16] without knowing about the earlier more general results
in [13]. However, on the basis of numerical experience and theoretical investigations
in [42], the MOL approach as a whole has turned out to be not sufficiently robust
for complex polyreaction kinetics. There are several reasons for this. The change
of the approximating subspace is prohibitively complicated in the MOL approach.
Furthermore, most of the operators cannot be preprocessed analytically, but require
numerical summation. In a MOL this introduces non-smooth right-hand sides leading
to very small and erratic time steps in sophisticated ODE solvers. In fact, the whole
development of new methods for countable systems got stuck by this obstacles before
the ROM had been introduced [44].

As already mentioned above, the ROM permits an easy adaptation of Galerkin
subspaces for the solution of the arising stationary value problems (1.7) or (1.8).
Moreover, this method is also clearly preferable for theoretical reasons that are elab-
orated in [4, 42]. On this basis, we suggest this approach also for the present context
of the CME.

2. Realization of Discrete Galerkin Methods. In this section, we work out
details on the choice of basis functions {qk}. Given an inner product associated with
the Hilbert spaces Hr ⊂ H, which may be weighted or unweighted, we choose as a
basis an orthogonal systems of polynomials of discrete variables. For this purpose,
we partly recall material already given in [13, 42] and modify it for use in the present
CME context. In the next subsection we will introduce the 1d case, leaving the
multiple dimensional case to the subsequent Section 2.3.

2.1. Global Techniques in 1d Revisited. In [13], a general setup has been
defined in terms of a weight function ψ(x ; ρ) with x ∈ N. The parameter ρ charac-
terizes the weight function and can be time dependent, as suggested in the so-called
“moving weight function” concept [13]. This weight function gives rise to the inner
product

〈u, v〉ψ =
∑

x∈Nd

u(x)v(x)ψ(x; ρ). (2.1)
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inducing some weighted norm ‖u‖2ψ = 〈u, u〉ψ thus defining some discrete Hilbert
space (sequence space)

Hψ = {u : N→ R : ‖u‖ψ < ∞} . (2.2)

As a basis in this Hilbert space, orthogonal polynomials {qk} are defined such that

〈qk, ql〉ψ = γkδkl , γk > 0,

where δkl denotes the Kronecker symbol. Numerical experience exhibited that the
more sophisticated choices of weight functions (cf. [13, 16, 45, 43, 16]), including
the moving weight function concept, lead to global discrete Galerkin methods that
are well-suited for monomodal solutions, but less appropriate to bimodal functions,
which, however, do arise in important applications. For that reason, Wulkow [43]
turned to localized unweighted polynomials, discrete Chebychev polynomials formally
corresponding to the weight function

ψ(x) ≡ 1 . (2.3)

It is this latter setting which paved the way to the extreme success of discrete Galerkin
methods in polymer chemistry. On this basis, we will suggest the same choice for the
CME context—to be treated in the next section for more than one spatial dimension.

Spatial error estimation. Recall the type of global expansion (1.4) for the exact
solution p and (1.5) for the Galerkin approximation pr. Of course, we will choose the
induced Hilbert space norm to get an error estimate ‖pr−p‖ψ. If the coefficients {ak}
are independent of the truncation index r, we obtain the exact expression

‖pr − p‖ψ =

∥∥∥∥∥
∞∑

k=r+1

akqk(x; ρ)

∥∥∥∥∥
ψ

=

( ∞∑

k=r+1

|ak|2γk

)1/2

. (2.4)

Otherwise, which is the typical case, a straightforward modification can be applied,
see [13]. Since, in this norm, the expansion coefficients tend to zero for k → ∞, the
spatial error estimate

epsr = ‖pr+1 − pr‖ψ = |ar+1|√γr+1

may serve the purpose. Clearly, this error estimate will work fine whenever the ex-
pansion coefficients decrease sufficiently fast. Otherwise, the expansion has to be
continued a few steps beyond the step r + 1.

Algebraic Galerkin equations. At the core of discrete Galerkin methods, alge-
braic equations must be constructed. For simplicity, we choose the implicit Euler
operator equation (1.7) for the first order approximation of u

(1)
n = un + ∆u

(1)
n . Re-

call that the increment ∆u
(1)
n is defined on the entire state space Nd. Denote by

∆ηn ∈ Hr the Galerkin approximation of ∆u
(1)
n , defined in terms of the coefficients

∆ηn = ((∆ηn)1, . . . , (∆ηn)r). Upon applying inner products with each orthogonal
polynomial, we arrive at the formal relations

〈
r∑

k=0

(qk − τAqk)(∆ηn)k, ql

〉

ψ

= 〈τAu0, ql〉ψ , l = 0, . . . , r. (2.5)
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Due to the orthogonality of the polynomial basis, this yields an algebraic system of
the kind (1.6) already shown in the context of the MOL, i.e.

(Γr − τA)∆ηn = b (2.6)

in terms of the r × r-matrices

Γr = diag(γk) and A = (〈Aqk, ql〉ψ)kl (2.7)

and with right-hand side coefficients b = (b1, . . . , br). In a similar way we obtain
the coefficients of the Galerkin approximation of the correction ∆u

(2)
n . The solution

of these linear equations is usually not difficult, since they are of low dimension r.
The difficulty, however, lies in the computation of the elements of Γ, A, and b, which
requires the approximation of the inner products that are defined over N.

Gauss-Christoffel summation. In order to compute the inner products 〈·, ·〉ψ we
have to approximate infinite sums. In [11, Section 9.7], an adaptive discrete multi-
grid algorithm (code SUMMATOR), which has been developed by Wulkow, has been
presented to approximate large sums efficiently. In the course of further improvement
of the polyreaction algorithms, discrete Gauss-Christoffel methods have been worked
out that are intimately linked to the structure of the weighted inner products. For
the trivial weight ψ ≡ 1, which we suggest to apply in the CME context, this leads to
a discrete Gauss–Legendre quadrature, i.e., to a high-order summation technique. On
the basis of the theory for Gauss-Christoffel quadrature, the nodes and weights can
easily be computed also in the discrete case. Given a truncation index r, a triangular
eigenvalue problem must be solved, for details see, e.g., [11]. It has been shown in
[43] that the “aliasing error” introduced by the Gauss-Christoffel summation does not
affect the quality of a Galerkin approximation of order r, if only at least r + 1 nodes
are used.

2.2. Localization and the Galerkin h-p-method in 1d. In practice, the
global approach outlined above has proven to be too restrictive, in particular when
dealing with multi-modal distributions. Therefore we abandon the global approxima-
tion strategy and introduce a localization principle based on decomposing the state
space into intervals. Furthermore, we choose the weight function to be the constant
function ψ ≡ 1. The Hilbert space corresponding to ψ ≡ 1 is the space of all square
summable sequences Hψ = l2 = {u : N→ R :

∑
x∈N |u(x)|2 < ∞}. Square summable

distributions p(t) ∈ l2 do in general not possess bounded statistical moments, which
is a desirable property. In order to guarantee bounded statistical moments, we con-
sider the family of Hilbert spaces Hψ(·,ρ) with weight function ψ(x, ρ) = (1− ρ)ρx for
x ∈ N. It can be shown that the infinitesimal generators corresponding to the CME
are typically discrete shift operators that have unique solutions within this family of
Hilbert spaces. Basically such operators are Lipschitz-continuous within the scale,
but not within one fixed Hψ(·,ρ). Now, if we require p(0) ∈ Hψ(·,ρ), we can ensure
that p(t) has bounded statistical moments for t > 0.

Consider a partition of the state space N given by

N =
[
L(1), U (1)

]
∪ · · · ∪

[
L(M), U (M)

]
∪

[
L(M+1),∞

)
(2.8)

with finite discrete intervals I(m) = [L(m), U (m)] = {L(m), L(m) + 1, . . . , U (m)} and
the semi-infinite interval I∞ = [L(M+1),∞) = {L(M+1), . . .}. We assume that L(i) ≤
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U (i) < L(j) ≤ U (j) for i < j, and set L(1) = 0 and L(m+1) = U (m) + 1. In the sequel,
we will describe how to approximate p(t) locally on each interval I(m). Define p

(m)
r (t)

to be the Galerkin approximation of order r to p(t) on I(m). In general, r will depend
on the interval I(m).

We first consider the semi-infinite interval I(∞). Choosing p
(∞)
0 (t) ≡ 0, the re-

sulting approximation error on I(∞) is

|p(t)− p
(∞)
0 (t)|I(∞) =

∑

x∈I(∞)

|p(t, x)|2. (2.9)

By assumption, the distribution p(t) possesses bounded zero, first and second statis-
tical moments µ0, µ1 and µ2, respectively. Consequently, the above approximation
error will get arbitrarily small, if xmax = L(M+1) − 1 is chosen large enough. It has
been shown in [44] that

xmax =
µ1

µ0
+ κ ·

√
µ2

µ0
−

(
µ1

µ0

)2

(2.10)

is a reasonable choice, where κ is a safety factor with a typical value of κ = 10. The
expression (2.10) can be derived by applying the Chebyshev inequality of statistics to
the probability that p(t, x) > ε for ε > 0 and x > xmax. This effectively accounts to
restricting the semi-infinite approximation problem to a finite approximation problem
on [0, xmax]. It is important to remark that xmax depends on the time evolution of
the system and is not known a priori. The adaptation of xmax from time step to time
step will be discussed in the next section (see Adaptation of state space truncation).

It remains to characterize the Galerkin approximations on the finite intervals I(m)

for m = 1, . . . , M . Consider the orthogonal basis {T (m)
k : k = 0, . . . , (U (m) − L(m))}

of discrete Chebyshev polynomials satisfying
〈
T

(m)
k , T

(m)
j

〉
I(m)

=
∑

x∈I(m)

T
(m)
k (x) T

(m)
j (x) = γ

(m)
j δk,j .

Then, we can represent p(t) on I(m) in terms of the Chebyshev polynomials

p(t, x) =
U(m)−L(m)∑

k=0

a
(m)
k T

(m)
k (x).

For simplicity, we ignore the time-dependence of the coefficients and the polynomials
and write a

(m)
k and T

(m)
k (x) instead of a

(m)
k (t) and T

(m)
k (t, x). Again the Galerkin

approximation p
(m)
r (t) to p(t) on I(m) is defined by some suitable truncation of the

above expansion

p(m)
r (t, x) =

r∑

k=0

a
(m)
k T

(m)
k (x)

with polynomial order r ≤ U (m) − L(m), which in general will depend on Im. The
resulting error may be estimated by

eps(m)
r = ‖p(m)

r+1(t)− p(m)
r (t)‖I(m) =

∣∣∣a(m)
r+1

∣∣∣
√

γ
(m)
r+1.
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In brief, we summarize the resulting decomposition and polynomial approximations
by the element-order pattern

∆1 =
{
(I1, r1), (I2, r2), . . . , (IM , rM )

}
.

We expect that for an efficient approximation rm ¿ U (m) − L(m) on most of the
elements. The whole approach using local refinement and higher order approximations
is called Galerkin h-p-method. For rather smooth distributions, we can expect that
only a few intervals with moderate polynomial orders are sufficient. However, for
distributions with steep flanks or for multi-modal distributions, the approach allows
an automated local adaptation to avoid bad and inefficient approximation. This,
in particular, is the reason for abandoning the global approach based on a weighted
Galerkin ansatz space and leads to efficient approximations even in higher dimensions.
Moreover, in an early, more theoretically paper about h-p-methods for PDEs [24] it
has been demonstrated on the basis of examples with known analytical solutions that
exponential convergence can be obtained by such an approach. This could be verified
for a wide range of practical applications for the discrete case.

2.3. A Tensor Product Approach to Multiple Dimensions. After these
preparations we can extend the approach to higher dimensions.

Domains in d dimensions. Analogous to the 1d case, we restrict the semi-infinite
domain Nd to a finite domain

D = [0, xmax,1]⊗ · · · ⊗ [0, xmax,d],

where xmax,i denotes the upper bound along the ith dimension. Next we decompose
D into disjoint rectangles {D(m) : m = 1, . . . M} such that

D =
M⋃

m=1

D(m) with D(m) = [L(m,1), U (m,1)]⊗ · · · ⊗ [L(m,d), U (m,d)].

This tensor ansatz allows us to directly make use of the one-dimensional h-p-method.
Given the multi-index k = (k1, . . . , kd), we define

T
(m)
k (x) = T

(m,1)
k1

(x1) · · ·T (m,d)
kd

(xd)

as the product of the discrete Chebyshev polynomials T
(m,i)
ki

on the intervals [L(m,i), U (m,i)]
in the ith dimension. We have to take care that the boundaries of the rectangles
appear only once (see Figure 3.1 for illustration). A Galerkin approximation on a
rectangle D(m) is then given by

p(m)
r (t, x) =

r(m)∑

k=1

a
(m)
k T

(m)
k (x)

with multi-index r(m) = (r(m)
1 , . . . , r

(m)
d ) ∈ Nd. This is a highly non-uniform and

flexible structure, since for each axis on each element an independent polynomial
system is used. The resulting element-order pattern is given by

∆d = {(D(1), r(1)), . . . , (D(M), r(M))}.
It should be noted that the evaluation of the approximation for a given x ∈ D can be
efficiently performed by expressing p

(m)
r (t) as the result of a sequence of 1d-Galerkin

approximations (which in turn can be computed by fast summation based on the
three-term recurrence of the polynomials [11]).
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Refinement strategy. Our aim is to find local approximations p
(m)
r (t) on each

domain D(m) such that the overall approximation

pr(t, x) =
M∑

m=1

p(m)
r (t, x) · 1D(m)(x)

with characteristic function

1D(m)(x) =
{

1 if x ∈ D(m)

0 if x 6∈ D(m)

satisfies

epsD = ‖pr − p‖D =

(
M∑

m=1

∥∥∥p(t)− p(m)
r (t)

∥∥∥
2

D(m)

)1/2

≤ TOLX . (2.11)

Since the general structure of the tensor product approach has now become apparent,
we restrict the following considerations to two dimensions for sake of clarity.

An element-order pattern ∆2 has to be generated by a multi-level algorithm using
certain refinement strategies. Based on an initial pattern it has to be decided step-
by-step how to change elements or polynomial orders. To do so, directional error
estimates are necessary, which can be used to predict the approximation errors after
increase of the polynomial order or refinement of (some of) the intervals (for details,
see [12]). In view of an efficient algorithmic realization, the element-order-pattern
is chosen and changed such that the amount of work necessary to compute the final
approximation is as small as possible. Therefore only rectangles are changed with a
local error larger than some threshold. The threshold is computed based on all error
predictions such that the errors within the decomposition are equilibrated. However,
one cannot set up a local tolerance for single domains a priori, since the number of
domains on the final level is not known beforehand. Additionally all refinement steps
are chosen in view of the obtained (and necessary) gain of accuracy per work.

From time step to time step of the ROM, the grid has to be coarsened in some
sense, since otherwise moving peaks or changing shapes would lead to a monotone
increase of expansion coefficients. For the coarsening the error estimates and the
now available average error per element are used. All domains having a local error
lower than a certain percentage of the average error will be changed by reducing the
polynomial order by one. If a minimal polynomial order is reached, such elements
D(m) will be merged with neighbors D(n) with L(m,i) = L(n,i) ∧ U (m,i) = U (n,i) for
at least one dimension i. This strategy is grid-conservative and flexible at the same
time. Additionally, the number of levels required to fulfill the stationary tolerance of
the next time step is kept small.

Adaptation of state space truncation. In the one-dimensional case an update of
xmax can easily be realized by adding or deleting intervals at the right boundary. This
is more complicated for the higher-dimensional case, since here all directions are af-
fected simultaneously. Therefore all coordinate directions are stretched or compressed
by the factor fi = (ymax,i + 1)/(xmax,i + 1), where ymax,i denotes the new estimate.
At the same time care has to be taken that all resulting L(m,i) and U (m,i) are still
defined as natural numbers. Finally, when compressing the whole grid ∆d, it has to
be ensured that no degenerated domains D(m) arise.
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Efficient evaluation of Galerkin matrix entries. In order to illustrate how the
setup of the Galerkin equations works in 2d, we consider the special operator

(Ap)(x1, x2) = α(x1 − 1, x2 + 1)p(t, x1 − 1, x2 + 1) (2.12)

as it appears as a typical term in the CME (see Sec. 3) with propensity a and distri-
bution p(t).

For the treatment within the Galerkin method, the operator A has to be applied
to all basis functions T

(n)
k = T

(n,1)
k T

(n,2)
l of all ansatz elements D(n) = I(n,1) ⊗ I(n,2),

and to be tested with all such pairs from test elements D(m) = I(m,1) ⊗ I(m,2). Thus
we have to compute double sums S = S(i, j, k, l;n, m) of the form

S =
∑

x1∈I(n,1)

∑

x2∈I(n,2)

T
(m,1)
i (x1)T

(m,2)
j (x2)α(x1−1, x2 +1)T (n,1)

k (x1−1)T (n,2)
l (x2 +1)

(2.13)
for all i, j, k, l and 1 ≤ m,n ≤ M . Here, the complexity is reduced by the fact that
only neighboring elements can lead to non-zero S. The intersection of the edges of
neighboring elements will be denoted by

I1
S = [max(L(m,1), L(n,1) − 1),min(U (m,1), U (n,1) − 1)]

I2
S = [max(L(m,2), L(n,2) + 1),min(U (m,2), U (n,2) + 1)].

Note that the Ii
S may consist of a single point, which will contribute to the summation.

The inner product S defined in eq. (2.13) is approximated by Gauss-Christoffel
summation S̃ based on the nodes x

(1)
1 , . . . , x

(n1)
1 and x

(1)
2 , . . . , x

(n2)
2 and corresponding

weights v1, . . . , vn1 and w1, . . . , wn2 , respectively. The sums can be evaluated in two
steps. First, for all Gauss-Christoffel nodes of the first direction, the second sum is
computed for all j and l:

S̃2(x
(γ)
1 ) =

n2∑

β=1

vβ α(x(γ)
1 , x

(β)
2 )T (m,2)

j (x(β)
2 )T (n,2)

l (x(β)
2 + 1).

Then S̃ can be expressed in terms of the intermediate approximations S̃2:

S̃ =
n1∑

γ=1

wγT
(m,1)
i (x(γ)

1 )T (n,1)
k (x(γ)

1 − 1)S̃2(x
(γ)
1 ).

In many cases, the propensity factorizes according to α(x1, x2) = α1(x1)a2(x2). Then,
S̃2(x

(γ)
1 ) is independent of x

(γ)
1 and S̃ is just the product of two 1d Galerkin sums

for shift operators. This approximation is exact, if the αi are polynomials and the
number of nodes is chosen accordingly. The structure of S̃ shows that starting from a
non-uniform, n-dimensional grid the final treatment of operators can be reduced to a
one-dimensional evaluation on single discrete intervals. This strategy is crucial for the
whole tensor product approach, because it allows to treat all terms of the equations
presented in Section 3 in a structured way.

A summary of the entire algorithm in its essential parts is given in the Ap-
pendix. We remark that the main computational effort of the algorithms consists in
the treatment of the single operators (cf. eq. (2.12)) leading to a quadratic matrix of
dimension number of degrees of freedom. The practical experience with this algorith-
mic approach in different fields shows that this number of degrees of freedom does
not increase exponentially with the dimension due to the local adaptation scheme and
only moderately with the required tolerance.
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3. Numerical Examples. In this section, we give two numerical examples to
illustrate the adaptive discrete Galerkin approach described above. The first one, a
genetic toggle switch, has been selected for comparison purposes, since it has already
been used as a test problem in [39] and [16]. The second one is an artificial test problem
constructed to generate special difficulties for any kind of tensor product approaches,
since there the dynamics asymptotically collapses to the diagonal between two sources.

3.1. Bistable Toggle Switch. As a first application, we consider a model for
the simulation of a genetic toggle switch in E. coli; cf. [18]. The model consists of two
competing repressors, A and B, transcribed by two constitutive promoters. Each of
the two repressors can inhibit the production of the competing repressor by binding
to the corresponding genetic control sequences of the promoter. The system includes
the following reactions:

R1 : ? −→ A, α1(x) = c1/(c2 + xβ
2 )

R2 : A −→ ?, α2(x) = c3x1

R3 : ? −→ B, α3(x) = c4/(c5 + xγ
1)

R4 : B −→ ?, α4(x) = c6x2





(3.1)

Here and below, the symbol ? denotes a species which is present in such a large quan-
tity that its molecule number can be considered as constant. The positive constants
c1, c2 and c3, c4 determine the maximal rate of synthesis of the repressors A and B,
respectively. The degradation rates of the repressors are denoted by c5 and c6, while
coefficients β > 1 and γ > 1 specify the cooperativity of the two promoters.

The reaction R1 is constructed in such a way that the corresponding propensity
α1(x) is small whenever x2 is large. Hence, the transcription of A is inhibited if many
copies of B are present. Conversely, a large copy number of A inhibits the production
of new B since x1 À 1 implies α3(x) ¿ 1. These two scenarios (large number of A
and small number of B, or large number of B and small number of A) correspond to
the two stable steady states of the traditional reaction rate equations

ẏ1 =
c1

c2 + yβ
2

− c3y1

(3.2)
ẏ2 =

c4

c5 + yγ
1

− c6y2

(cf. [18]). The solution of (3.2), however, does not provide an appropriate description
since a single trajectory can only converge to one of the steady states, whereas in
the real biological system flipping between stable states due to chemical or thermal
induction is possible (cf. [18]). This switching behavior can only be reproduced by
a stochastic description including fluctuations which can induce transitions from one
steady state to the other one.

Due to the bistability of the toggle switch, the solution of the corresponding CME

∂

∂t
p(t, x1, x2) =

c1

c2 + xβ
2

(
p(t, x1 − 1, x2)− p(t, x1, x2)

)
(3.3)

+c3(x1 + 1)p(t, x1 + 1, x2)− c3x1p(t, x1, x2) (3.4)

+
c4

(c5 + xγ
1)

(
p(t, x1, x2 − 1)− p(t, x1, x2)

)
(3.5)

+c6(x2 + 1)p(t, x1, x2 + 1)− c6x2p(t, x1, x2) (3.6)
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is a bimodal PDF. Bimodality is of prime importance in many biological applications
since it indicates the presence of two different scenarios or macro-states. Hence it
is crucial that a numerical method constructed for solving the CME captures the
bimodality correctly.

In [39], the parametrisation

c1 = c4 = 3 · 103s−1, c2 = c5 = 1.1 · 104,
c3 = c6 = 0.001s−1, β = γ = 2 (3.7)

has been used, and both the stationary distribution and the time-dependent solution
in the interval [0, 104] have been computed on the domain [0, 399]× [0, 399]. Instead
of solving the full discrete CME, however, the authors presented an approximation
of the Fokker-Planck equation, a PDE known to be, in some sense, the continuous
counterpart of the CME (see, e.g., [17]). In the case of the genetic toggle switch, this
may yield a reasonable approximation, but in situations where the discrete nature of
the reaction system is crucial (cf. [28, 40]), replacing the CME by the Fokker-Planck
equation causes a large modelling error in addition to the numerical approximation
error. Hence, the approach proposed in [39] can actually not be considered as a viable
method for the CME, but rather as a method for the Fokker-Planck equation.

The genetic toggle switch has been investigated again in [16]. There, a computa-
tion based on the full CME has been presented, but the computational domain was
decreased in [16] to approximately [0, 200]× [0, 200] by a rescaling of the parameters.
Note that, by construction, our adaptive discrete Galerkin method does not require
any such downscaling.

The following simulations have been performed with a special 2d-version of the
program package Predicir. In our first example, the full CME of (3.1) with param-
eters (3.7) was solved up to a predefined tolerance of 0.03. As an initial distribution,
the product Gaussian

1
2πσ1σ2

exp
(
− (x1 − µ1)2

2σ2
1

)
exp

(
− (x2 − µ2)2

2σ2
2

)
(3.8)

has been evaluated and normalized on the discrete state space for µ1 = µ2 = 133
and σ1 = σ2 =

√
133. Figure 3.1 shows the PDF at t = 6 · 104. By this time, the

PDF has almost converged to the stationary distribution, and a comparison of Figure
3.1 with the right panel of Figure 3 in [39] shows indeed a very good agreement.
The bimodality is clearly visible and indicates the relevant biological information,
namely the bistability of the toggle switch. Along with the contour lines, the h-p-
grid is depicted; the numbers indicate the maximal order of the polynomial basis.
As desired, the discrete Galerkin method refines either the subdivision of space or
the polynomial order or both in regions where the solution changes significantly, and
the grid shows a nearly perfect symmetry. The number of degrees of freedom of this
h-p-grid is about 1600.

Figure 3.2 shows the time-evolution of the degrees of freedom for the tolerances
0.1, 0.03, 0.01. It can be nicely seen how the adaptive strategies refine the approxi-
mation according to the requirements of the changing distribution. It can also be rec-
ognized that the number of variables increases more or less linearly with the required
tolerance - a sign for nearly exponential convergence rate of the discrete h-p-method,
even if a wider range of tolerances would be necessary to proof this here (see remark
in Section 2.2). It should be pointed out that even when the desired accuracy is
rather high, only about 3000 degrees of freedom have to be handled, whereas a näıve
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Fig. 3.1. Stationary distribution of the genetic toggle switch (3.1), (3.7) obtained from a
dynamic simulation on the time-interval [0 , 6 · 104]. The boxes and numbers indicate the h-p-grid
and the maximal order of the polynomial basis.

computation of the PDF on the considered state space 0, . . . , 349 × 0, . . . , 349 would
require the solution of 3502 = 122500 ODEs. This corresponds to a reduction of more
than 97.5%.

0 2 4 6 8 10 12

x 10
4
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1000

1500

2000

2500

3000

3500
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Degrees of freedom

 

 

TOL=0.01
TOL=0.03
TOL=0.1

Fig. 3.2. Total number of degrees of freedom as a function of time for the tolerances 0.1, 0.03,
0.01.

Next, in order to study an asymmetric and more challenging situation, we chose
µ1 = 100, µ2, σ1 = 10, and σ2 = 3 in (3.8). The initial domain has been chosen to
[0, 150]×[0, 20]. In the course of the integration this range is extended adaptively. The
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panels of Figure 3.3 show the time evolution of the PDF. First, the main part of the
probability mass is attracted by the lower steady state since it is closer to the center
of the initial PDF than the upper one. At t = 16000 the distribution is stretched a
bit, and the additional grid refinements around (50, 200) seem to be dispensable.

t = 0

t = 1250

t = 16000

t = 5 · 105

t = 5 · 106

t = 16000

Fig. 3.3. “Movie” of the PDF of the genetic toggle switch (3.1), (3.7). The panels shows
the solution at different times. In the lower right panel the solution at t = 16000 is depicted in
logarithmical greyscale.

However, the coloured contour plot (here plotted in logarithmical greyscale) indi-
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cates that some of the probability mass already leaks to the other stationary state. As
time evolves, more and more probability mass fluctuates very slowly from the lower
to the upper steady state until finally an equilibrium between both states is reached
in the stationary distribution. This simulation has been performed with tolerance
0.01 and a maximum of 2700 variables at intermediate states. The h-p-grid is nearly
symmetric at the final stage. This example shows how the h-p-algorithm and the
ROM automatically capture the dynamics and the structure of distributions. More
pictures would lead too far off here, but, e.g., by setting µ = 10−4 or even µ = 10−5,
intermediate distributions with maximal particle numbers up to several thousands
occurred and could equally well be represented.

Fig. 3.4. Top: Contour plot of the solution of the CME (3.10), (3.11) for N = 100 and
TOL = 0.02 at t = 5. Bottom: Three dimensional visualization of the solution of the CME (3.10),
(3.11) for N = 10000 and TOL = 0.05 at t = 5.
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3.2. A Challenging Test Problem. As a second example, we chose a com-
paratively simple model problem which, however, represents a real challenge for any
numerical method based on a tensor product ansatz:

R1 : A −→ B, α1(x) = c1x1

R2 : B −→ A, α2(x) = c2x2

R3 : C −→ A, α3(x) = c3x3

R4 : A + B −→ B + B, α4(x) = c4x1x2

R5 : A + B −→ A + A, α5(x) = c5x1x2





(3.9)

Since there are three species A,B, C involved, the state space is actually three dimen-
sional, but since the total number N of molecules remains invariant in all reactions,
the molecule numbers of one of the species, say C, can be expressed in terms of the
other ones:

x3 = N − x1 − x2.

This actually reduces the three-dimensional problem to a two-dimensional one. The
corresponding CME reads

∂

∂t
p(t, x1, x2) = c1(x1 + 1)p(t, x1 + 1, x2 − 1)− c1x1p(t, x1, x2) (3.10)

+c2(x2 + 1)p(t, x1 − 1, x2 + 1)− c2x2p(t, x1, x2)
+c3(N − x1 − x2 + 1)p(t, x1 − 1, x2)− c3(N − x1 − x2)p(t, x1, x2)
+c4(x1 + 1)(x2 − 1)p(t, x1 + 1, x2 − 1)− c4x1x2p(t, x1, x2)
+c5(x1 − 1)(x2 + 1)p(t, x1 − 1, x2 + 1)− c5x1x2p(t, x1, x2).

We suppose that at t = 0 there are N molecules of C and no molecules of A or B
such that the initial distribution is given by

p(0, x1, x2) =
{

1 if x1 = x2 = 0,
0 else.

It is easy to see that in the limit t −→ 0 all molecules of C disappear and that
the exchange between A and B reaches an equilibrium. In the special case

c1 = . . . = c5 = 1, (3.11)

it can be shown that the stationary distribution is the uniform distribution on the
line

{
(x1, x2) ∈ N2 : x1 + x2 = N

}
, i.e.

p̄(x1, x2) = lim
t→∞

p(t, x1, x2) =

{
1/(N + 1) if x1 + x2 = N,

0 else.

This distribution is the worst case for any tensor product ansatz, because an exact
representation of p̄ requires N + 1 basis functions although p̄ contains only N + 1
nonzero elements. Moreover, all nonzero elements have the same value such that any
truncation produces the same error.

Figure 3.4 (upper panel) shows the result for N=100 at t=5 computed with TOL =
0.02 . At that time, the distribution is nearly reduced to the line x1 + x2 = N , and
obviously this leads to difficulties regarding the domain decomposition into rectangles.
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About 2500 variables are necessary to compute the solution. In comparison to the
maximum number of about 10000, this is not a convincing reduction, and for smaller
N , the reduction is even less efficient. However, if we do not try to approximate the
final end of the process, but stop a bit earlier, the pay-off can be immense. Figure
3.4 (lower panel) shows the solution at t=4, but with N increased to N = 10000. To
obtain a tolerance of TOL = 0.05 on the state space with 10000× 10000 states, only
about 2600 variables are required, which corresponds to a reduction of 0.999974%! A
3d-plot shot from the top shows how narrow even then the front already is.

Conclusion. We present an adaptive discrete Galerkin method for solving the
chemical master equation (CME). In one state space dimension, such methods have
had an impressive influence on the modelling of polyreaction kinetics. For the CME,
however, the step towards multiple dimensions turns out to be crucial. The paper
clearly shows that discrete Galerkin methods allow an efficient treatment of CME. In
particular, examples as the one presented in the last figure could not be solved up to
now - not even in two dimensions. However, the challenging second example makes it
apparent that there is still a complexity barrier in view of more complicated cases and
higher dimensions. Future research will therefore have to focus on how to overcome
these difficulties. Nevertheless, the results presented here will lay a measure for any
future improvements.

Acknowledgement. The authors are grateful to all three referees for their valu-
able comments on the manuscript.
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[39] P. Sjöberg, P. Lötstedt, and J. Elf, Fokker-Planck approximation of the master equation
in molecular biology, Comput. Vis. Sci., (2007).

[40] R. Srivastava, L. You, J. Summers, and J. Yin, Stochastic vs. deterministic modeling of
intracellular viral kinetics, J. theor. Biol., 218 (2002), pp. 309–321.

[41] Daniel W. Stroock, An Introduction to Markov Processes, vol. 230 of Graduate Texts in
Mathematics, Springer, 2005.

[42] M. Wulkow, Numerical Treatment of countable systems of ordinary differential equations,
doctoral thesis, Freie Universität Berlin, 1990.

[43] , Adaptive treatment of polyreactions in weighted sequence spaces, IMPACT Comput Sci
Eng, 4 (1992), pp. 153–193.

[44] , The simulation of molecular weight distribution in polyreaction kinetics by discrete



21

Galerkin methods, Macromol Theory Simul, 5 (1996), pp. 393–416.
[45] M. Wulkow and P. Deuflhard, Towards an efficient computational treatment of heteroge-

neous polymer reactions, in Computational Ordinary Differential Equations, S. O. Fatunla,
ed., University Press PLC, Ibadan, 1992, pp. 287–306.

[46] W. J. Yoon, Y. S. Kim, I. S. Kim, and K. Y. Choi, Recent advances in polymer reaction
engineering: Modeling and control of polymer properties, Korean J. Chem. Eng., 21 (2004),
pp. 147–167.

Appendix.
Algorithmic flow. According to the different steps outlined in the preceding sec-

tions the algorithm can be summarized as follows. The most outer loop is the Time
Control. Within the time control, the routine on Galerkin approximation is called.
This, in turn, relies on the subroutines Initial element-order-pattern that coarsens the
element-order-pattern from the previous time step and Final element-order-pattern
that computes the necessary element-order-pattern to meet the spatial tolerance.

Time control. Given the current approximation un of p(tn) and
the current time step τ .

1. Solve the stationary problem (1.7) with φ = un and spatial
accuracy TOLp using some Galerkin approximation as outlined
below.

2. Solve system (1.8) using the same representation of the solution
obtained in Step 1 and compute an estimate of the temporal
error epsT using eq. (1.9).

3. Compute the new step size according to eq. (1.10).
4. If the error epsT is smaller than TOL, set t = t + τ , φ = un+1,

τ = τnew and go to Step 1. Otherwise, reduce the step size τ
and go to Step 2.

Galerkin approximation. Given the parameterization of the Galerkin
ansatz space at the current time t, an approximation un of p(tn), the
current time step τ and the spatial tolerance TOLp.

1. Compute the parameterization of a new Galerkin ansatz space
Hr at time t + τ .

2. Solve the stationary problems (1.7) and (1.8) in the new Galerkin
ansatz space with resulting spatial discretization error epsD sat-
isfying epsD ≤ TOLp.

Initial element-order-pattern. Given the decomposition of the
overall discretization domain of the previous step.

1. Eliminate all domains with corresponding low polynomial order,
i.e., domains that are possibly not necessary.

2. Add such eliminated domains to the neighbored domain with
lowest order.

Final element-order-pattern. Given an initial decomposition of
the discretization domain D(m) and an error estimate eps(m)

D of the
local expansion on each rectangle D(m).

1. Decide on the basis of local error prediction

eps(m)
D =

∥∥∥p(t)− p(m)
r (t)

∥∥∥
D(m)

,
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whether the rectangle D(m) has to be divided or the present
polynomial order has to be increased.

2. Compute a threshold value to decide which domains have to be
changed (divided or order increase).

3. Build up the Galerkin equations (2.5) that define the expansion
coefficients on each domain D(m) for all local approximations
p
(m)
r and solve them.

4. Estimate the overall approximation error epsD according to (2.11).
5. If epsD < TOLp then stop, otherwise go to Step 1.


