Approximate inverse for the common offset acquisition geometry in 2D seismic imaging

Andreas Rieder Christine Grathwohl Peer Kunstmann Todd Quinto
Organization of the material

The Problem
The Method
The Experiments
The Future
The Problem
An inverse problem for the acoustic wave equation

\[u(t; x, x_s) \] acoustic potential in \(x \in \mathbb{R}^2 \) at time \(t \geq 0 \)

\[\frac{1}{\nu^2} \partial_t^2 u - \Delta_x u = \delta(x - x_s)\delta(t) \]

\(\nu = \nu(x) \) speed of sound, \(x_s \) excitation (source) point.

Seismic imaging

Recover \(\nu \) from the backscattered (reflected) fields

\[u(t; x_r, x_s), \quad t \in [0, T_{\text{max}}], \quad (x_r, x_s) \in \mathcal{R} \times \mathcal{S} \]

where

\(\mathcal{S}/\mathcal{R} \) sets of source/receiver points, and

\(T_{\text{max}} \) observation period.
Generalized Radon transform

Consider the ansatz
\[\frac{1}{\nu^2(x)} = \frac{1 + n(x)}{c^2(x)}, \]
\(c = c(x) \) smooth and known background velocity.

Determine \(n \) from
\[Fw(T; x_r, x_s) = \int_0^T (u - \tilde{u})(t; x_r, x_s) \, dt \]
with the generalized Radon transform
\[Fw(T; x_r, x_s) = \int \frac{w(x)}{c^2(x)} a(x, x_s) a(x, x_r) \delta(T - \tau(x, x_s) - \tau(x, x_r)) \, dx \]
which integrates \(w \) over reflection isochrones: \(T = \tau(\cdot, x_s) + \tau(\cdot, x_r) \).

Travel-time \(\tau \) and amplitude \(a \) can be computed from
\[|\nabla_x \tau| = c^{-1} \quad \text{and} \quad \text{div}(a^2 \nabla_x \tau) = 0. \]
Historical note: Kirchhoff migration

- Since the 1950’s Kirchhoff migration is the standard technique to approximately solve the integral equation.

- Beylkin (1984, 1985) showed that there is a convolution type operator K and a dual transform $F^\#$ such that

\[F^\# K F = I + \Psi \]

where Ψ is compact. Further, Kirchhoff migration is the direct application of $F^\# K$ to the measured data.
Since the 1950’s Kirchhoff migration is the standard technique to approximately solve the integral equation.

Beylkin (1984, 1985) showed that there is a convolution type operator K and a dual transform $F^\#$ such that

$$F^\# K F = I + \Psi$$

where Ψ is compact. Further, Kirchhoff migration is the direct application of $F^\# K$ to the measured data.

We advocate a different approach which we think

- is more flexible,
- allows a better control of the involved parameters, and
- gives a better understanding of the propagation of singularities

which hopefully results in better reconstructions.
The elliptic Radon transform in 2D

- background velocity $c = 1$: $\tau(x, y) = |x - y|$ and $a(x, y) = 1/|x - y|$
- n is compactly supported in the lower half space $x_2 > 0$ ($x_2 > 0$ points downwards),

common offset scanning geometry:

$$x_s(s) = (s - \alpha, 0)^\top \quad \text{and} \quad x_r(s) = (s + \alpha, 0)^\top$$

where $\alpha > 0$ is the common offset.
The elliptic Radon transform (continued)

In this situation the generalized Radon transform integrates over ellipses and may be written as

\[Fw(s, t) = \int A(s, x)w(x)\delta(t - \varphi(s, x))dx, \quad t > 2\alpha, \]

with

\[\varphi(s, x) := |x_s(s) - x| + |x_r(s) - x| \]

and

\[A(s, x) = \frac{1}{|x_s(s) - x| |x_r(s) - x|}. \]
The imaging operator

As an inversion formula for F is unknown we define the reconstruction operator

$$\Lambda = \Delta F^* \Phi F$$

where

- $\Phi = \Phi(s, t)$ is a smooth compactly supported cutoff function,
- F^* is a formal (weighted) L^2-adjoint of F, and
- Δ is the Laplacian.

From the elliptic means $g = F n$ we can recover

$$\Lambda n = \Delta F^* \Phi g.$$
Why this choice of Λ?

- Λ is a Ψdo of order 1 and Λn emphasizes singularities (e.g., jumps along curves) of n which are tangent to ellipses being integrated over.
 (follows from results by Guillemin & Sternberg, 1977, and by Krishnan et al., 2012)
Inversion scheme: approximate inverse

Instead of $\Lambda n(p)$ we try to compute

$$\Lambda_{\gamma} n(p) := \langle \Lambda n, e_{p,\gamma} \rangle_{L^2(\mathbb{R}^2)} = \Lambda n \ast e_{0,\gamma}(p)$$

where $e_{p,\gamma}, \gamma > 0$, is a mollifier:

$$\supp e_{p,\gamma} = \overline{B_{\gamma}(p)}, \quad \int e_{p,\gamma}(x) dx = 1, \quad e_{p,\gamma} \xrightarrow{\gamma \to 0} \delta(\cdot - p).$$

We use

$$e_{p,\gamma,k}(x) = C_{k,\gamma} \begin{cases} (\gamma^2 - \Theta^2)^k : \Theta < \gamma, \\ 0 : \Theta \geq \gamma, \end{cases} \quad \Theta = |x - p|,$$

with $k > 0$ and

$$C_{k,\gamma} = \frac{k + 1}{\pi \gamma^{2(k+1)}}.$$
Inversion scheme: reconstruction kernel

Lemma: For $k \geq 3$ we have that

$$\Lambda_{\gamma} n(p) = \langle \Phi F n, \psi_{p,\gamma,k} \rangle_{L^2(\mathbb{R} \times [2\alpha,\infty],t^2 \, dt \, ds)}$$

with the **reconstruction kernel**

$$\psi_{p,\gamma,k}(s,t) = 4k \, C_{k,\gamma} \left((k-1) \, F\left(| \cdot - p |^2 \tilde{e}_{p,\gamma,k-2} \right)(s,t) - F\tilde{e}_{p,\gamma,k-1}(s,t) \right)$$

with $\tilde{e}_{p,\gamma,k} = e_{p,\gamma,k}/C_{k,\gamma}$.

Proof: By duality, $\Lambda_{\gamma} n(p) = \langle \Delta F^* \Phi F n, e_{p,\gamma,k} \rangle = \langle \Phi F n, \psi_{p,\gamma,k} \rangle$ with

$$\psi_{p,\gamma,k} = F\Delta e_{p,\gamma,k} = C_{k,\gamma} F\Delta\tilde{e}_{p,\gamma,k}$$

and $\Delta\tilde{e}_{p,\gamma,k} = 4k(k-1) | \cdot - p |^2 \tilde{e}_{p,\gamma,k-2} - 4k \tilde{e}_{p,\gamma,k-1}$ yields the result. \checkmark
Plotting the kernel

\[\psi_{p, \gamma, 3}, \alpha = 1.00, \gamma = 0.80, p = (0.00, 3.00) \]

Left:

- \(t \) vs. midpoint \(s \)
- Travel time vs. diameter

Right:

- Travel time (diameter) vs. \(\psi_{p, \gamma, 3}(0, :) \), \(\alpha = 1.00, \gamma = 0.80, p = (0.00, 3.00) \)
The Experiments
Discretization

We compute

\[\Lambda_\gamma n(p) = \langle \Phi F n, \psi_{p,\gamma,3} \rangle_{L^2(\mathbb{R} \times]2\alpha, \infty[)} \]

from the discrete data

\[g(i, j) = \Phi(s_i, t_j) F n(s_i, t_j), \quad i = 1, \ldots, N_s, \quad j = 1, \ldots, N_t, \]

where

\[\{s_i\} \subset [-s_{\text{max}}, s_{\text{max}}] \quad \text{and} \quad \{t_j\} \subset [t_{\text{min}}, t_{\text{max}}], \quad t_{\text{min}} > 2\alpha, \]

are uniformly distributed with step sizes \(h_s \) and \(h_t \), respectively.

\[\Lambda_\gamma n(p) \approx \tilde{\Lambda}_\gamma n(p) := h_s h_t \sum_{i=1}^{N_s} \sum_{t_j \in \mathcal{J}_i(p)} g(i, j) \psi_{p,\gamma,3}(s_i, t_j) t_j^2 \]

with \(|\mathcal{J}_i(p)| \sim \gamma \).
The phantom n and its transform $\Phi F n$

\[N_s = N_t = 600 \]
Reconstructed images $\tilde{\Lambda}_{\gamma n}$

\[\alpha = 2.00, \gamma = 0.20, \ s_{\min} = -15.00, \ t_{\max} = 34.90 \]

\[\alpha = 5.00, \gamma = 0.20, \ s_{\min} = -15.00, \ t_{\max} = 40.50 \]
Reconstructed images $\tilde{\Lambda}_{\gamma n}$: limited data

$\alpha = 5.00, \gamma = 0.20, s_{\min} = -7.50, t_{\max} = 25.50$

$s_i \in [-7.5, 7.5]$
Data from the wave equation

\[
Fw(T; x_r, x_s) = \int_0^T (u - \tilde{u})(t; x_r, x_s) \, dt
\]

- \[[0.1, 1] \times [0.1, 0.8]\] with absorbing bc using PML. Step size 0.01.
- 17 source/receiver pairs, \(\alpha = 0.05\), positioned at \((s \pm \alpha, 0.1)\), \(s \in \{0.15 + 0.05i : i = 0, \ldots, 16\}\), to record \(u\) at the receivers.
- Temporal source signal: scaled Gaussian.
- \(\tilde{u}\) was computed with constant sound speed \(c = 1\).
Wavefields

Sine profile

Cosine profile

PySIT — Seismic Imaging Toolbox for Python
by L. Demanet & R. Hewitt
Preprocessed seismograms

\[y(s, t) = \int_0^T (u - \tilde{u})(t; x_r(s), x_s(s)) \, dt \]
Reconstructed images $\tilde{\Lambda}_{0.06n}$
The Future
Next steps

- Generalization to 3D
- Symbol calculation for Λ
 \[
 \Lambda n(y) = \int \int n(x)\sigma(x, y, p)e^{-ip(x-y)}dx dp
 \]
- New reconstruction kernels
- Non-constant background velocity
Next steps

- Generalization to 3D
- Symbol calculation for Λ

$$\Lambda n(y) = \int \int n(x) \sigma(x, y, p) e^{-ip(x-y)} dx dp$$

- New reconstruction kernels
- Non-constant background velocity

Thank you for your attention!
Why this choice of Λ?

Λ is a Ψdo of order 1 and Λn emphasizes singularities (e.g., jumps along curves) of n which are tangent to ellipses being integrated over.

Proof:

- Under the Bolker assumption any hypersurface Radon transform R on \mathbb{R}^d and its (formal, smoothly weighted) L^2-adjoint R^* are FIOs of order $-(d - 1)/2$. (Guillemin & Sternberg, 1977)
- If they can be composed, then $R^* R$ is a Ψdo.
- Our F on \mathbb{R}^2 satisfies the Bolker assumption (Krishnan et al., 2012), that is, $F^* \Phi F$ is of order -1.
Reconstructed images $\tilde{\Lambda}_\gamma n$: erroneous offset
Computing the kernel

Let χ be the indicator function of $B_r(p)$ which is in the lower half-space. To evaluate

$$F\chi(s,t) = \int A(s, x) \chi(x) \delta(t - \varphi(s, x)) \, dx, \quad t > 2\alpha,$$

we transform the integral by elliptic coordinates $x(s, t, \phi) = (x_1, x_2)^\top$,

$$x_1 = s + \frac{t}{2} \cos \phi \quad \text{and} \quad x_2 = \sqrt{\frac{t^2}{4} - \alpha^2} \sin \phi.$$

Note: $E(s, t) = \{x(s, t, \phi) : \phi \in [0, 2\pi]\}$ ellipse wrt $x_s(s), x_r(s)$, and t.

Thus,

$$F\chi(s, t) = \frac{1}{\sqrt{t^2 - 4\alpha^2}} \int_0^\pi \chi(x(s, t, \phi)) \, d\phi.$$
Computing the kernel (continued)

To evaluate $F_{\chi}(s, t)$ further we provide the following quantities

$$T_{-/+} = T_{-/+}(s, r, p) = \min / \max \{ \varphi(s, x) : x \in \partial B_r(p) \}.$$

$$E(s, t) \cap B_r(p) \neq \emptyset \iff T_- < t < T_+$$

For $t \in [T_-, T_+]$:

$$E(s, t) \cap B_r(p) = \{ x(s, t, \phi) : \phi \in [\phi_1, \phi_2] \}$$

$$F_{\chi}(s, t) = \begin{cases}
0 & : t \notin]T_-, T_+[\\
\frac{\phi_2 - \phi_1}{\sqrt{t^2 - 4\alpha^2}} & : t \in]T_-, T_+[
\end{cases}$$
Computing the kernel (continued)

Remaining tasks: Compute $T_{-/+}$, $\phi_{1/2}$.

$$T_{-/+} = \min / \max \left\{ \tilde{\varphi}(\vartheta) : \vartheta \in [0, 2\pi[\right\}$$

where

$$\tilde{\varphi}(\vartheta) := \varphi(s, p + r(\cos \vartheta, \sin \vartheta)^\top).$$

- $\tilde{\varphi}$ attains exactly one minimum and one maximum in $[0, 2\pi[.$
- As both extrema are clearly separated, we can apply Newton’s method to get the two zeros of $\tilde{\varphi}'$.
Computing the kernel (continued)

- Having T_{\pm} we solve

$$r^2 = |p - x(s, t, \phi)|^2 \quad \text{for } \phi.$$

For $t \in]T_-, T_+[,$ $s \in \mathbb{R}$ we have exactly the two solutions ϕ_1 and ϕ_2.

- We substitute

\[
\begin{align*}
 z &= \cos \phi, \\
 b &= (s - p_1) t, \\
 c &= (p_1 - s)^2 + p_2^2 + \frac{t^2}{4} - \alpha^2 - r^2, \\
 d &= \sqrt{t^2 - 4\alpha^2 p_2},
\end{align*}
\]

leading to the equation

$$d \sqrt{1 - z^2} = c + b z + \alpha^2 z^2,$$

which has exactly two solutions $-1 \leq z_2 < z_1 \leq 1$.

- By Newton’s method again,

$$\phi_i = \arccos z_i, \quad i = 1, 2.$$
The kernel $\psi_{p,\gamma,k} = F\Delta e_{p,\gamma,k}$ can be computed just as $F\chi$.

Indeed, let $k = 3$, then

$$\Delta e_{p,\gamma,3}(x) = C_{3,\gamma}(-36|x-p|^4 + 48\gamma^2|x-p|^2 - 12\gamma^4)\chi_{B_\gamma(p)}(x).$$

Now F can be applied to each of the components of $\Delta e_{p,\gamma,3}$, e.g.,

$$F(|\cdot - p|^4\chi_{B_\gamma(p)})(s,t) = \begin{cases} 0 & : t \notin]T_-,T_+[, \\ \frac{1}{\sqrt{t^2 - 4\alpha^2}} \int_{\phi_1}^{\phi_2} |x(s,t,\phi) - p|^4 \, d\phi & : t \in]T_-,T_+[. \end{cases}$$

Here,

$$|x(s,t,\phi) - p|^4 = \left((s - p_1 + \frac{t}{2}\cos\phi)^2 + \left(\sqrt{\frac{t^2}{4} - \alpha^2 \sin\phi - p_2}\right)^2 \right)^2$$

is a trigonometric polynomial which can be integrated analytically.