Home | english | Impressum | Sitemap | Intranet | KIT
Institut für Angewandte und Numerische Mathematik 4: Numerische Simulation, Optimierung und Hochleistungsrechnen

Sekretariat
Kollegiengebäude Mathematik (20.30)
Zimmer 3.039

Adresse
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte und Numerische Mathematik
Englerstrasse 2
76131 Karlsruhe

Öffnungszeiten:

Tel.: +49 721 608 - 42062

Fax.: +49 721 608 - 44178

Der Modellansatz: Modell052 - Erdrutsche

modellansatz.de/erdrutsche

Bei genauem Hinsehen finden wir die Naturwissenschaft und besonders Mathematik überall in unserem Leben, vom Wasserhahn über die automatischen Temporegelungen an Autobahnen, in der Medizintechnik bis hin zum Mobiltelefon. Woran die Forscher, Absolventen und Lehrenden in Karlsruhe gerade tüfteln, erfahren wir im Modellansatz Podcast aus erster Hand.

Der Modellansatz: Erdrutsche. Visualisierung: Katharina Elsen, Komposition: Sebastian Ritterbusch

Katharina Elsen ist für 6 Monate aus Bologna im Rahmen eines Forschungsaufenthalts nach Karlsruhe gekommen. In Ihrer Forschungsgruppe zur numerischen Geophysik sind Tsunamis im Mittelmeerraum, wie beispielsweise im Raum von Italien und der Türkei, das Hauptforschungsgebiet. Ein Auslöser für Tsunamis sind Erdbeben, aber auch Erdrutsche können der Grund für die großen Wasserwellen sein, die dann sogar eine globale Auswirkung haben können.

Im Varjont-Tal kam es 1963 nach dem Aufstauen eines Stausees zu einem Landrutsch. Dieser führte zu einer Tsnuamiwelle im Stausee, die in ihrer Größe weit unterschätzt wurde, und zur schrecklichen Tragödie von Langarone führte. Solche Vorgänge können natürlich auch in Küstengebieten auftreten und die gegenüberliegenden Küsten gefährden.

Im Gegensatz zu sehr plötzlichen seismischen Aktivitäten können Landrutsche weit langfristigere Vorgänge sein. Auch können die sich bewegenden Landmassen aus beweglichem Schlamm oder feinem Geröll bestehen oder aus eher festen Bestandteilen. Dies beeinflusst stark die möglichen Modelle, und Katharina Elsen beschreibt im Gespräch mit Gudrun Thäter ihre Modelle und Forschung zu Landrutschen von Bergabschnitten, die sich eher wie ein Festkörper als wie ein Fluid verhalten.

Die Landmassen werden in einige Festkörper-Masseblöcke aufgeteilt, die jeweils Massenzentren bzw. Baryzentren besitzen und deren Berandung bekannt ist. Daraus wird die individuelle Bewegung der Blöcke modelliert, wie auch die gegenseitige Beeinflussung auf verschiedene Arten. Letztlich wird dann untersucht, wie die Blöcke letztlich durch Geschwindigkeit und Form auf das Wasser wirken, um bessere Aussagen über resultierende Wellenhöhe treffen zu können.

Der erste Schritt zur Simulation ist die Zerlegung der gleitenden Oberflächen in Dreiecke, und dann wird die Bewegung der einzelnen Massepunkte für das vereinfachte Modell durch die klassische Newtonsche Mechanik zunächst exakt berechnet. Für die Beeinflussung der Massepunkte zueinander werden verschiedene approximierende Modelle erforscht, und Parameter entsprechend den Beobachtungen identifiziert.

Die Ansätze und Modelle fließen in eine Software zur Erdrutschsimulation, die auch im Bereich der Reibungsmodelle überarbeitet wurde: Da auf triangulisierten Oberflächen alle Funktionen und Eigenschaften dort bisher nur in linearisierter Form auftreten, können höhere Ableitungen nur über erweiterte Modelle approximiert werden.


Literatur und Zusatzinformationen