Home | english | Impressum | Sitemap | Intranet | KIT
Institut für Angewandte und Numerische Mathematik 4: Numerische Simulation, Optimierung und Hochleistungsrechnen

Sekretariat
Kollegiengebäude Mathematik (20.30)
Zimmer 3.039

Adresse
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte und Numerische Mathematik
Englerstrasse 2
76131 Karlsruhe

Öffnungszeiten:

Tel.: +49 721 608 - 42062

Fax.: +49 721 608 - 44178

Der Modellansatz: Modell050 - Klothoiden

modellansatz.de/klothoiden

Bei genauem Hinsehen finden wir die Naturwissenschaft und besonders Mathematik überall in unserem Leben, vom Wasserhahn über die automatischen Temporegelungen an Autobahnen, in der Medizintechnik bis hin zum Mobiltelefon. Woran die Forscher, Absolventen und Lehrenden in Karlsruhe gerade tüfteln, erfahren wir im Modellansatz Podcast aus erster Hand.

Der Modellansatz: Klothoiden, Foto, Visualisierung und Komposition: Sebastian Ritterbusch

Klothoiden sind Kurven, die 1794 von Jakob I. Bernoulli zuerst beschrieben wurden. Er hatte die Form eines Metallstreifens untersucht, der von einem Gewicht an einem Ende verbogen wird, während das andere Ende eingespannt ist. Als Resultat des elastischen Verhaltens ist dann die Krümmung proportional zur Kurvenlänge. Viele weitere Eigenschaften von Kurven mit dieser Eigenschaft wurden dann von Leonhard Euler über den Rahmen des Gedankenexperiments von Bernoulli hinaus bewiesen, wie zum Beispiel die Position der asymptotischen Endpunkte.

Im Straßen- und Schienenbau sind Klothoiden ausgezeichnete Übergangsbögen zwischen geraden Strecken und Kurven, da diese Kurve die Krümmung zwischen den beiden Abschnitten gleichmäßig anpasst. Bei der Planung von Schienentrassen wurde diese Eigenschaft vor etwa 100 Jahren schon ausgenutzt. Eine aktuelle wichtige Anwendung ist die Abbildung der Straßen in Fahrassistenzsystemen, wo passend parametrisierte Klothoiden große Vorteile gegenüber Splines besitzen, wie Gotami Heller im Gespräch mit Gudrun Thäter erklärt.

Um Klothoiden tatsächlich im Computermodell benutzen zu können, muss eine möglichst adäquate Approximation gesucht und implementiert werden, die die nötige Glattheit in der Kurve erhält.


Literatur und Zusatzinformationen