Home | english | Impressum | Sitemap | Intranet | KIT
Institut für Angewandte und Numerische Mathematik 4: Numerische Simulation, Optimierung und Hochleistungsrechnen

Sekretariat
Kollegiengebäude Mathematik (20.30)
Zimmer 3.039

Adresse
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte und Numerische Mathematik
Englerstrasse 2
76131 Karlsruhe

Öffnungszeiten:

Tel.: +49 721 608 - 42062

Fax.: +49 721 608 - 44178

Der Modellansatz: Modell041 - Risikobewertung

modellansatz.de/risikobewertung

Bei genauem Hinsehen finden wir die Naturwissenschaft und besonders Mathematik überall in unserem Leben, vom Wasserhahn über die automatischen Temporegelungen an Autobahnen, in der Medizintechnik bis hin zum Mobiltelefon. Woran die Forscher, Absolventen und Lehrenden in Karlsruhe gerade tüfteln, erfahren wir im Modellansatz Podcast aus erster Hand.

Der Modellansatz: Risikobewertung, Visualisierung: Wolfgang Härdle, Komposition: Sebastian Ritterbusch

Prof. Dr. Wolfgang Härdle war im Rahmen des Workshop zu High Dimensional, High Frequency and Spatial Data in Karlsruhe und sprach mit Gudrun Thäter über sein Forschungsgebiet. Er befasst sich an der Humboldt-Universität zu Berlin mit der Bewertung von Risiken und ist am Lehrstuhl der Nachfolger von Ladislaw Bodjevich, der unter anderem für seine Arbeiten zum Gesetz der kleinen Zahlen berühmt geworden ist: Es sagt aus, dass auch wenn alle 37 Roulette-Zahlen gleich wahrscheinlich sind, nach 37 Würfen im Durchschnitt nur etwa 2/3 der Zahlen aufgetreten sind. Damit steht es nur scheinbar in gewissem Kontrast zum Gesetz der großen Zahlen, das bestimmt, wie die Auftrittshäufigkeit sich für viele Würfe der Gleichverteilung annähert.

Das Flanken-Maß ist eine Eigenschaft von Profit and Loss (PnL, GuV)-Funktionen oder Zufallsvariablen, die die Dicke von Flanken oder Entferntheit von seltenen Ereignissen modelliert. Schon Ladislaw Bodjevich hat erkannt, dass das die Bewertung von Extremrisiken und wenige vorhandene Daten einen Widerspruch darstellt. Die Normalverteilung ist die Grenzverteilung gewichteter Zufallsgrößen, wenn der Grenzwert existiert, also bei vielen Ereignissen das Gesetz der großen Zahlen zum Einsatz kommen kann. Bei wenigen Ereignissen gelangt man zur Poisson-Verteilung.

Obwohl sie theoretisch viele Prozesse gut beschreiben sollte, funktioniert die Normalverteilung in der Realität aus vielen Gründen oft schlechter als erwartet: Sich verändernde Prozesse können Mischverhältnisse von an sich normal-verteilten Bestandteilen verändern, ebenso kann sich die Volatilität bzw. die Streuung um den Erwartungswert über die Zeit verändern. Es kann aber auch eine vollkommene andere Verteilung vorliegen wie zum Beispiel die Extremwertverteilung, Weibull-Verteilung mit algebraisch abfallenden Tails oder der Pareto-Verteilung. Leider ist die stochastische Konvergenz von Extermwertverteilungen sehr schlecht, und erschwert so Vorhersagen und Bewertungen.

So wurden strukturierte Finanzprodukte mit multivariaten Modellen und einer Normalverteilungsannahme viel zu vereinfacht modelliert. So waren CDO-Produkte daher vor der Finanzkrise ab 2007 viel zu billig und hatten einen beträchtlichen Anteil an der Krise.

Die Risikobewertung ist aber nicht nur für die Bewertung von Katastrophen-Bonds für Versicherungen gegen Erdbeben wichtig, sondern auch für die Analyse von EEG von Kindern. Sie hilft aber auch den Risikofaktor Mensch im Sinne der Behaviour Finance zu verstehen.



Literatur und Zusatzinformationen