Home | english | Impressum | Sitemap | Intranet | KIT
Institut für Angewandte und Numerische Mathematik 4: Numerische Simulation, Optimierung und Hochleistungsrechnen

Sekretariat
Kollegiengebäude Mathematik (20.30)
Zimmer 3.039

Adresse
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte und Numerische Mathematik
Englerstrasse 2
76131 Karlsruhe

Öffnungszeiten:

Tel.: +49 721 608 - 42062

Fax.: +49 721 608 - 44178

Der Modellansatz: Modell024 - Wasserstraßen

modellansatz.de/wasserstrassen

Bei genauem Hinsehen finden wir die Naturwissenschaft und besonders Mathematik überall in unserem Leben, vom Wasserhahn über die automatischen Temporegelungen an Autobahnen, in der Medizintechnik bis hin zum Mobiltelefon. Woran die Forscher, Absolventen und Lehrenden in Karlsruhe gerade tüfteln, erfahren wir im Modellansatz Podcast aus erster Hand.

Der Modellansatz: Wasserstraßen. Rebekka Kopmann - BAW

An der Bundesanstalt für Wasserbau (BAW) befasst sich Rebekka Kopmann in der Abteilung für Flusssysteme mit Analysen und Prognosen des Systemzustands von Bundeswasserstraßen. Strömungsmodelle liegen am BAW sowohl als nachgebaute Modelle von Flussstücken als auch als mathematisch beschriebene Computermodelle vor, die nur im Rechner simuliert werden. Im Gespräch mit Gudrun Thäter beschreibt sie die Herausforderung der Kalibration der Simulationsmodelle an die Wirklichkeit, damit sinnvolle Analysen und Prognosen möglich werden. Neben vielen weiteren Parametern ist die Rauheit im Fluss sehr wichtig und ist leider nur sehr zeitaufwendig zu bestimmen. Die Aufgabe führt sie auf ein Optimierungsproblem zurück, wo die unbekannten Parameter durch Annäherung vielfach ausgeführter Simulationen an die gemessene Wirklichkeit bestimmt werden. Da eine einzelne Flusssimulation teilweise tagelang rechnet, sucht sie nach sinnvollen Vereinfachungen oder Alternativen, die das Problem schneller lösen. Aktuell werden Methoden der Automatischen Differentiation eingesetzt, die helfen Gradientenverfahren zur Annährung an die Lösung zu beschleunigen. Dabei trifft man auch auf interdisziplinäre Herausforderungen, wenn es um die feinen mathematischen Unterschiede zum Beispiel zwischen Ableitung, Steigung und einem Gradienten geht.

Literatur und Zusatzinformationen