Problem T56: Compute the following limits using L'Hôpital's rule:

\[a) \lim_{x \to 0} \frac{\tan x - x}{x^3} \]
\[b) \lim_{x \to \infty} \left(x + \frac{1}{\ln(1 - \frac{1}{x})} \right) \]
\[c) \lim_{x \to \frac{\pi}{2}} \frac{\ln\left(\frac{\pi}{2} - x\right)}{\tan x} \]
\[d) \lim_{x \to 0} x^{\tan x} . \]

Problem T57: Given the function \(f : \mathbb{R} \to \mathbb{R}, \)
\[f(x) = \begin{cases}
 1 - x + \ln x, & x \neq 1 \\
 1, & x = 1
\end{cases} \]
determine \(c \) such that \(f \) is continuous at the point \(x = 1. \)

Problem T58: Using the mean value theorem, prove the following inequalities:

a) \(|\cos e^x - \cos e^y| \leq |x - y| \) für \(x, y \leq 0 \)
b) \(\ln(1 + x) \leq \frac{x}{\sqrt{1 + x}} \) für \(x > 0. \)

Hint b): Consider \(f(t) = \ln(1 + t) - \frac{t}{\sqrt{1 + t}} \) in the interval \([0, x]).\)

Problem T59: Let \(f(x) = x^x, x > 0. \) Why is \(f \) differentiable? Determine \(f' \), the monotonicity and the extreme values of \(f. \)

Problem T60: a) Give all the points at which the function \(f(x) = x + 2\sin x, x \in \mathbb{R}, \)
satisfies the condition \(f'(x) = 0. \) Which of these are actually extreme points?
b) Carry out a similar analysis for the function \(g(x) = x + \sin x, x \in \mathbb{R}. \)

Tutorial date: Tuesday, February 7, 2006, 8:00 am