Worksheet 7
Advanced Mathematics I for Mechanical Engineering

Problem 31: Let

\[a_1 = b \quad a_{k+1} = \frac{|a_k|}{2a_k - 1} \]

be a recursively defined sequence with initial values \(b = -\frac{1}{4} \), and \(b = \frac{1}{4} \).

(a) What are the possible limits of the sequence?

(b) For which of the values of \(b \) is the sequence monotone? For which is it bounded?

(c) For each value of \(b \) verify that the sequence converges and determine the limit in case it does.

Problem 32: Let \(p(x) = x^4 - 3x^3 - 3x^2 + 11x - 6 \).

(a) Determine the numbers \(a_0, \ldots, a_4 \in \mathbb{R} \), where \(p(x) = \sum_{j=0}^{4} a_j (x-1)^j \).

(b) Factorize \(p \), and determine all roots of \(p \).

Problem 33: Let the function \(f : \mathbb{R} \to \mathbb{R} \) be defined as

\[f(x) = \begin{cases} 1 - 2x - x^2, & x \leq 1, \\ 9 - 6x + x^2, & x > 1. \end{cases} \]

Determine the largest possible intervals, in which the function is invertible. Determine the inverse function in each case and sketch it.

Problem 34: At which points \(x \in \mathbb{R} \) are the following functions \(f_j : \mathbb{R} \to \mathbb{R} \) continuous?

(a) \(f_1(x) := \begin{cases} \frac{x^3 + 4x^2 + x - 6}{x^3 - 3x + 2}, & x \in \mathbb{R} \setminus \{1, -2\} \\ 0, & x = 1, \\ -\frac{1}{3}, & x = -2, \end{cases} \)

(b) \(f_2(x) := \begin{cases} x, & x \in \mathbb{Z}, \\ 0, & \text{otherwise}. \end{cases} \)

Problem 35: The function \(f \) is defined over \(\mathbb{R} \setminus \{2\} \) by

\[f(x) = \begin{cases} \frac{12x - 9}{x^2 - 2x}, & 1 < |x| < 3, \ x \neq 2 \\ p(x), & \text{otherwise} \end{cases} \]

where \(p \) is a polynomial. The polynomial \(p \) should be determined, so that the function \(f \) is continuous. Make an assumption for \(p \) and prove that this assumption leads to a unique solution. Determine the polynomial.

Due date: Tuesday, January 10, 2005, 8:00 am (in the tutorial)
Problem T25: Let

\[p(x) = x^4 + 8x^3 + 22x^2 + 24x + 9. \]

Expand \(p \) at \(x_0 = -2 \), i.e. find a representation in the form \(p(x) = \sum_{j=0}^{4} a_j(x+2)^j \) Additionally, factorize the polynomial.

Problem T26: Given are the set \(D \subset \mathbb{R} \) and the function \(f : D \to \mathbb{R} \) with the following formula:

(a) \(x \mapsto \frac{x^3 + x^2 - 4x - 4}{x^2 - x - 2} \),

(b) \(x \mapsto \frac{x^3 - 2x^2 + 3x - 2}{x^2 - 2x + 5} \).

Specify the maximal domain \(D \) of \(f \). Further, for part a), determine the range \(W \) of \(f \) and decide if an inverse function \(g : W \to D \) exists. Specify it, if it does.

Problem T27: Determine the limits \(\lim_{x \to x_0} f(x) \) of the following functions \(f \) and points \(x_0 \):

(a) \(f(x) = \frac{x - 2}{x^2 - 4} \) für \(x > 2 \), \(x_0 = 2 \),

(b) \(f(x) = \frac{\sqrt{x} - 1}{\sqrt{x} - 1} \) für \(x > 1 \), \(x_0 = 1 \).

Problem T28: Consider the piecewise defined function

\[f(x) = \begin{cases} 12 & x < -1 \\ p(x) & -1 \leq x < 2 \\ 1 - 2x & x \geq 2, \end{cases} \]

where \(p \) is a polynomial.

(a) Determine a polynomial \(p \) with the smallest possible degree, such that \(f \) is continuous. Is it unique?

(b) Can such a polynomial be determined, so that additionally \(f(1) = -2 \)? Justify your answer in case it cannot, or specify it in case it can.

Tutorial: Tuesday, December 13, 2005, room 203 in the ID